A unifying framework for deciding synchronizability

Benedikt Bollig, Cinzia Di Giusto, Alain Finkel,
Laetitia Laversa, Étienne Lozes, and Amrita Suresh

I3S, Univ. Côte d’Azur and LMF, ENS Paris Saclay
FIFO Systems

Client-Server-Logger example

From Lange and Yoshida, CAV'19
FIFO Systems

Client-Server-Logger example
From Lange and Yoshida, CAV'19

Testing if there is a bound on the size of a queue is undecidable!
Brand and Zafiropulo, JACM'83
Synchronizability

~ if every execution can be rescheduled so that it meets certain criteria

a channel bound
all accepting executions re-ordered to a k-bounded execution.

Lohrey and Muscholl, Inf. Comp. '04
DEFINITIONS

all accepting executions re-ordered to a k-bounded execution.

send projection equivalent to that of rendezvous.

Basu and Bultan, WWW'11
DEFINITIONS

all accepting executions re-ordered to a k-bounded execution.

send projection equivalent to that of rendezvous.

if every MSC admits a linearization that can be divided into "blocks"

Bouajjani et al., CAV'18
DEFINITIONS

Inclusion into these classes?

if every MSC admits a linearization that can be divided into "blocks"
The class of MSCs are MSO-definable.

The class of MSCs have bounded special tree-width.
The class of MSCs are MSO-definable. Condition 1

Decidable inclusion!

The framework
<table>
<thead>
<tr>
<th>Class of MSCs</th>
<th>Peer-to-Peer</th>
<th>Mailbox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakly synchronous</td>
<td>Undecidable</td>
<td>EXPTIME</td>
</tr>
<tr>
<td>Weakly k-synchronous</td>
<td>—</td>
<td>Decidable</td>
</tr>
<tr>
<td>Strongly k-synchronous</td>
<td>—</td>
<td>Decidable</td>
</tr>
<tr>
<td>Existentially k-p2p-bounded</td>
<td>Decidable</td>
<td></td>
</tr>
<tr>
<td>Existentially k-mailbox-bounded</td>
<td>—</td>
<td>Decidable</td>
</tr>
</tbody>
</table>