A Unifying Framework for Deciding Synchronizability

B. Bollig, C. Di Giusto, A. Finkel, L. Laversa, É. Lozes, and A. Suresh

I3S, Univ. Côte d'Azur and LMF, ENS Paris Saclay

CONCUR 2021
FIFO Systems

Distributed processes

- each process is a finite state machine
FIFO Systems

Distributed processes

- each process is a finite state machine
- fixed number

\[P_1, \ldots, P_n \]
FIFO Systems

Distributed processes

- each process is a finite state machine
- fixed number
- communicate using queues
Communication architecture

- p2p → one queue per pair of processes
- mailbox → one queue per process
Example: a P2P System

- **P_1** sends **q_0** to **q_1** on **$a^1 \rightarrow 2$**.
- **q_0** sends a request **$b^2 \rightarrow 1$** to **s_0**.
- **s_0** sends a request **$c^2 \rightarrow 3$** to **r_0**.
- **r_0** sends a request **$d^3 \rightarrow 2$** to **r_2**.
- **r_2** sends a request **$d^2 \rightarrow 3$** to **r_1**.
- **r_1** sends a request **$c^2 \rightarrow 3$** to **s_0**.
- **s_0** sends a response **$d^3 \rightarrow 2$** to **s_2**.
- **s_2** sends a response **$d^3 \rightarrow 2$** to **r_2**.
- **r_2** sends a response **$d^2 \rightarrow 3$** to **r_3**.
- **r_3** sends a response **$d^2 \rightarrow 3$** to **r_1**.
Example: a P2P System

\[
\begin{align*}
P_1 & \rightarrow q_0 \\
\tau & = !a \\
P_2 & \rightarrow r_0 \\
P_3 & \rightarrow s_0
\end{align*}
\]
Example: a P2P System
Example: a P2P System
Example: a P2P System

\[\tau = !a \cdot b \cdot ?b \cdot !c \]
Example: a P2P System

\[
\tau = !a \cdot b \cdot ?b \cdot !c \cdot ?c
\]
Example: a P2P System
Example: a P2P System
Example: a Mailbox system

We cannot have same trace as before!

MSC still valid

New trace $\tau = !b \cdot !c \cdot ?c \cdot !d \cdot !a \cdot ?b \cdot ?d$
Boundedness

Boundedness Problem
Is there a bound on the size of the queues for all runs?
Boundedness

Boundedness Problem

Is there a bound on the size of the queues for all runs?

UNDECIDABLE in general FIFO systems \(^1\)

\(^1\)Brand and Zafiropulo, *On communicating finite-state machines*, 1983
Boundedness

Underapproximations

- Restrict to k-bounded channels.
Underapproximations

- Restrict to k-bounded channels. Too restricting!
Boundedness

Underapproximations

- Restrict to k-bounded channels. Too restricting!
- Every unbounded execution is equivalent to a bounded execution.
Synchronizability

- *existentially k-bounded* systems \(^1\ 2\) - all accepting executions re-ordered to a \(k\)-bounded execution.

\(^1\) Lohrey and Muscholl, *Bounded MSC communication*, 2002

\(^2\) Genest et al., *A Kleene theorem for a class of communicating automata with effective algorithms*, 2004
Synchronizability

- existentially k-bounded systems 12
- synchronizable systems 3 - send projection equivalent to rendezvous.

1 Lohrey and Muscholl, *Bounded MSC communication*, 2002
2 Genest et al., *A Kleene theorem for a class of communicating automata with effective algorithms*, 2004
3 Basu and Bultan, *Choreography conformance via synchronizability*, 2011
Synchronizability

- existentially k-bounded systems 1 2
- synchronizable systems 3
- k-synchronizable systems 4 - if every MSC admits a linearization that can be divided into “blocks” of at most k messages.

1 Lohrey and Muscholl, *Bounded MSC communication*, 2002
2 Genest et al., *A Kleene theorem for a class of communicating automata with effective algorithms*, 2004
3 Basu and Bultan, *Choreography conformance via synchronizability*, 2011
4 Bouajjani et al., *On the completeness of verifying message passing programs under bounded asynchrony*, 2018
Weakly k-synchronous MSCs

A k-exchange is an MSC that allows one to schedule all sends before all receives, and there are at most k sends.
A k-exchange is an MSC that allows one to schedule all sends before all receives, and there are at most k sends.

Definition

M is weakly k-synchronous if it is of the form $M = M_1 \cdot \ldots \cdot M_n$ such that every M_i is a k-exchange.
A k-exchange is an MSC that allows one to schedule all sends before all receives, and there are at most k sends.

Definition

M is weakly k-synchronous if it is of the form $M = M_1 \cdot \ldots \cdot M_n$ such that every M_i is a k-exchange.
Weakly \(k\)-synchronous MSCs

An exchange is an MSC that allows one to schedule all sends before all receives and there are at most \(k\) sends.

Definition

\(M\) is weakly synchronous if it is of the form \(M = M_1 \cdot \ldots \cdot M_n\) such that every \(M_i\) is an exchange.
Weakly k-synchronous MSCs

An exchange is an MSC that allows one to schedule all sends before all receives and there are at most k sends.

Definition

M is weakly synchronous if it is of the form $M = M_1 \cdot \ldots \cdot M_n$ such that every M_i is an exchange.
MSO definability

Condition 1
The set of MSCs are MSO-definable.
MSO definability

- **First-order variables**
 - $x \rightarrow y$ \quad x precedes y in the process order
 - $x \triangleleft y$ \quad x and y are matched send-receive events
 - $\lambda(x) = a$ \quad x has the label a
 - $x = y$

- **Second-order variable**
 - $\exists x. \phi$ \quad there is an event x such that ϕ
 - $\exists X. \phi$ \quad there is a unary relation X such that ϕ holds
 - $\phi \lor \phi, \neg \phi, x \in X$, etc.
MSO definability

First-order variables

- $x \rightarrow y$
 x precedes y in the process order
- $x \triangleleft y$
 x and y are matched send-receive events
- $\lambda(x) = a$
 x has the label a
- $x = y$
 Second-order variable
- $\exists x. \phi$
 there is an event x such that ϕ
- $\exists X. \phi$
 there is a unary relation X such that ϕ holds
- $\phi \lor \phi$, $\neg \phi$, $x \in X$, etc.

$matched(x) = \exists y. x \triangleleft y$ indicates that x is a matched send.
Special tree width

Condition 2
The set of MSCs have bounded special tree-width.
Special tree width

Condition 2
The set of MSCs have bounded special tree-width.
Special tree width

Condition 2
The set of MSCs have bounded special tree-width.

- Adam-Eve play the *decomposition game.*
Special tree width

Condition 2
The set of MSCs have bounded special tree-width.

- Adam-Eve play the *decomposition game*.
- Eve “colours” some events on the MSC, removes edges between coloured events.
Special tree width

Condition 2
The set of MSCs have bounded special tree-width.

- Adam-Eve play the *decomposition game*.
- Eve “colours” some events on the MSC, removes edges between coloured events.
- Adam chooses one of the resulting connected components.
Special tree width

Condition 2
The set of MSCs have bounded special tree-width.

- Adam-Eve play the *decomposition game*.
- Eve “colours” some events on the MSC, removes edges between coloured events.
- Adam chooses one of the resulting connected components.
- Bounded special tree-width k if Eve can win (colour all vertices) with $k + 1$ colours.
Crucial observation

Theorem

Let C be a class of MSCs. If C is MSO-definable and STW-bounded class, the following problem is decidable: Given a communicating system S, do we have $L(S) \subseteq C$?
Crucial observation

Theorem

Let C be a class of MSCs. If C is MSO-definable and STW-bounded class, the following problem is decidable: Given a communicating system S, do we have $L(S) \subseteq C$?

- Synchronizability for an STW-bounded class reduces to bounded model-checking
- Bounded model-checking \rightarrow known to be decidable

5 c.f. Bollig and Gastin, Non-sequential theory of distributed systems, 2019
Applying the framework to Weakly synchronous MSCs

Result

The set of weakly synchronous MSCs are MSO-definable.
Applying the framework to Weakly synchronous MSCs

Conflict graph

```
  p   q
    a
    b
    c
    e

  a -- SS -- b
    RS
  e -- SR -- c
```
Applying the framework to Weakly synchronous MSCs

Result
The set of weakly synchronous MSCs are MSO-definable.

Graphical characterization of weakly synchronous MSCs
- No RS edge along any cycle
MSO definable!
Applying the framework to Weakly synchronous MSCs

Result

The set of weakly synchronous MSCs has bounded STW.

- Eve’s strategy - isolate each exchange, then remove message pairs
- Uses at most $4n + 1$ colours
Summary of results

<table>
<thead>
<tr>
<th>Class of MSCs</th>
<th>Peer-to-Peer</th>
<th>Mailbox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakly synchronous</td>
<td>Undecidable</td>
<td>EXPTIME</td>
</tr>
<tr>
<td>Weakly k-synchronous</td>
<td>Decidable 6, 7</td>
<td></td>
</tr>
<tr>
<td>Strongly k-synchronous</td>
<td>—</td>
<td>Decidable</td>
</tr>
<tr>
<td>Existentially k-p2p-bounded</td>
<td>Decidable 8</td>
<td></td>
</tr>
<tr>
<td>Existentially k-mailbox-bounded</td>
<td>—</td>
<td>Decidable</td>
</tr>
</tbody>
</table>

6 Bouajjani et al., *On the completeness of verifying message passing programs under bounded asynchrony*, 2018

7 Di Giusto et al., *On the k-synchronizability of systems*, 2020

8 Genest et al., *On communicating automata with bounded channels*, 2007
Comparison of classes

P2P systems

- Weakly synchronizable
 - Weakly k-synchronizable
 - Universally bounded
- Existentially bounded
Comparison of classes

Mailbox systems

Weakly synchro.

Weakly k-synchro.

Strongly k-synchro.

Strongly synchro.

Existentially bounded

Universally bounded
Contributions

- Unifying framework for various notions of synchronizability.
- Applicable to both mailbox and p2p communications.
- LCPDL for better complexity.
Thank you!