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Communication architecture

p2p −→ one queue per pair of processes

mailbox −→ one queue per process
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Example: a Mailbox system
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Boundedness Problem

Is there a bound on the size of the queues for all runs?

UNDECIDABLE in general FIFO systems 1

1Brand and Zafiropulo, On communicating finite-state machines, 1983
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Synchronizability

blank blank

existentially k-bounded systems 1 2 - all accepting executions re-ordered to a k-bounded
execution.

1Lohrey and Muscholl, Bounded MSC communication, 2002
2Genest et al., A Kleene theorem for a class of communicating automata with effective algorithms, 2004
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Synchronizability

blank blank

existentially k-bounded systems 1 2

synchronizable systems 3 - send projection equivalent to rendezvous.

1Lohrey and Muscholl, Bounded MSC communication, 2002
2Genest et al., A Kleene theorem for a class of communicating automata with effective algorithms, 2004
3Basu and Bultan, Choreography conformance via synchronizability, 2011
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Synchronizability

blank blank

existentially k-bounded systems 1 2

synchronizable systems 3

k-synchronizable systems 4 - if every MSC admits a linearization that can be divided into
“blocks” of at most k messages.

1Lohrey and Muscholl, Bounded MSC communication, 2002
2Genest et al., A Kleene theorem for a class of communicating automata with effective algorithms, 2004
3Basu and Bultan, Choreography conformance via synchronizability, 2011
4Bouajjani et al., On the completeness of verifying message passing programs under bounded asynchrony,

2018
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at most k sends.

Definition

M is weakly synchronous if it is of the form M = M1 · . . . ·Mn such that every Mi is an
exchange.
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MSO definability

Condition 1

The set of MSCs are MSO-definable.
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MSO definability

matched(x) = ∃y .x C y indicates that x is a matched send.
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Eve “colours” some events on the MSC, removes edges between coloured events.

Adam chooses one of the resulting connected components.

Bounded special tree-width k if Eve can win (colour all vertices) with k + 1 colours.
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Crucial observation

Theorem

Let C be a class of MSCs. If C is MSO-definable and STW-bounded class, the following
problem is decidable: Given a communicating system S , do we have L(S) ⊆ C?

Synchronizability for an STW-bounded class
reduces to−−−−−−→ bounded model-checking

Bounded model-checking −→ known to be decidable 5

5c.f. Bollig and Gastin, Non-sequential theory of distributed systems, 2019
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Result

The set of weakly synchronous MSCs are MSO-definable.
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Applying the framework to Weakly synchronous MSCs

Result

The set of weakly synchronous MSCs are MSO-definable.

Graphical characterization of weakly synchronous MSCs

No RS edge along any cycle

MSO definable!
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Applying the framework to Weakly synchronous MSCs

Result

The set of weakly synchronous MSCs has bounded STW.

Eve’s strategy - isolate each exchange, then remove message pairs

Uses at most 4n + 1 colours
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Summary of results

Class of MSCs Peer-to-Peer Mailbox

Weakly synchronous Undecidable EXPTIME

Weakly k-synchronous Decidable 6, 7

Strongly k-synchronous — Decidable

Existentially k-p2p-bounded Decidable 8

Existentially k-mailbox-bounded — Decidable

6Bouajjani et al., On the completeness of verifying message passing programs under bounded asynchrony,
2018

7Di Giusto et al., On the k-synchronizability of systems, 2020
8Genest et al., On communicating automata with bounded channels, 2007
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Comparison of classes
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Contributions

Unifying framework for various notions of synchronizability.

Applicable to both mailbox and p2p communications.

LCPDL for better complexity.
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Thank you!
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