
A Unifying Framework for Deciding Synchronizability

B. Bollig, C. Di Giusto, A. Finkel, L. Laversa, É. Lozes, and A. Suresh

I3S, Univ. Côte d’Azur and LMF, ENS Paris Saclay

CONCUR 2021



Introduction Synchronizability Framework Conclusion

FIFO Systems

Distributed processes

each process is a finite state machine

Pi :

fixed number P1, ...,Pn

communicate using queues
Pi Pj



Introduction Synchronizability Framework Conclusion

FIFO Systems

Distributed processes

each process is a finite state machine

Pi :

fixed number P1, ...,Pn

communicate using queues
Pi Pj



Introduction Synchronizability Framework Conclusion

FIFO Systems

Distributed processes

each process is a finite state machine

Pi :

fixed number P1, ...,Pn

communicate using queues
Pi Pj



Introduction Synchronizability Framework Conclusion

Communication architecture

p2p −→ one queue per pair of processes

mailbox −→ one queue per process



Introduction Synchronizability Framework Conclusion

Example: a P2P System

q0 q1

q2

!a1−→2

?b2−→1

P1

r0 r1

r2r3

!b2−→1

!c2−→3

?d3−→2

P2

s0 s1

s2

?c2−→3

!d3−→2

P3



Introduction Synchronizability Framework Conclusion

Example: a P2P System

q0 q1

q2

!a1−→2
?b2−→1

P1

r0 r1

r2r3

!b2−→1

!c2−→3

?d3−→2

P2

s0 s1

s2

?c2−→3

!d3−→2

P3

a

e1

P1 P2 P3

a

b

c

d

τ =!a·!b·?b·!c·?c·!d ·?d



Introduction Synchronizability Framework Conclusion

Example: a P2P System

q0 q1

q2

!a1−→2
?b2−→1

P1

r0 r1

r2r3

!b2−→1

!c2−→3

?d3−→2

P2

s0 s1

s2

?c2−→3

!d3−→2

P3

a
b

e1

e2

P1 P2 P3

a

b

c

d

τ =!a·!b·?b·!c·?c·!d ·?d



Introduction Synchronizability Framework Conclusion

Example: a P2P System

q0 q1

q2

!a1−→2
?b2−→1

P1

r0 r1

r2r3

!b2−→1

!c2−→3

?d3−→2

P2

s0 s1

s2

?c2−→3

!d3−→2

P3

a

e1

e2e′2

P1 P2 P3

a

b

c

d

τ =!a·!b·?b·!c·?c·!d ·?d



Introduction Synchronizability Framework Conclusion

Example: a P2P System

q0 q1

q2

!a1−→2
?b2−→1

P1

r0 r1

r2r3

!b2−→1

!c2−→3

?d3−→2

P2

s0 s1

s2

?c2−→3

!d3−→2

P3

a

c

e1

e2e′2

e3

P1 P2 P3

a

b

c

d

τ =!a·!b·?b·!c·?c·!d ·?d



Introduction Synchronizability Framework Conclusion

Example: a P2P System

q0 q1

q2

!a1−→2
?b2−→1

P1

r0 r1

r2r3

!b2−→1

!c2−→3

?d3−→2

P2

s0 s1

s2

?c2−→3

!d3−→2

P3

a

e1

e2e′2

e3 e′3

P1 P2 P3

a

b

c

d

τ =!a·!b·?b·!c·?c·!d ·?d



Introduction Synchronizability Framework Conclusion

Example: a P2P System

q0 q1

q2

!a1−→2
?b2−→1

P1

r0 r1

r2r3

!b2−→1

!c2−→3

?d3−→2

P2

s0 s1

s2

?c2−→3

!d3−→2

P3

a

d

e1

e2e′2

e3 e′3

e4

P1 P2 P3

a

b

c

d

τ =!a·!b·?b·!c·?c·!d ·?d



Introduction Synchronizability Framework Conclusion

Example: a P2P System

q0 q1

q2

!a1−→2
?b2−→1

P1

r0 r1

r2r3

!b2−→1

!c2−→3

?d3−→2

P2

s0 s1

s2

?c2−→3

!d3−→2

P3

a

e1

e2e′2

e3 e′3

e4e′4

P1 P2 P3

a

b

c

d

τ =!a·!b·?b·!c·?c·!d ·?d



Introduction Synchronizability Framework Conclusion

Example: a Mailbox system

e1

e2e′2

e3 e′3

e4e′4

P1 P2 P3

a

b

c

d

We cannot have same trace as before!

MSC still valid

New trace τ =!b·!c ·?c ·!d ·!a·?b·?d



Introduction Synchronizability Framework Conclusion

Boundedness

Boundedness Problem

Is there a bound on the size of the queues for all runs?



Introduction Synchronizability Framework Conclusion

Boundedness

Boundedness Problem

Is there a bound on the size of the queues for all runs?

UNDECIDABLE in general FIFO systems 1

1Brand and Zafiropulo, On communicating finite-state machines, 1983



Introduction Synchronizability Framework Conclusion

Boundedness

Underapproximations

Restrict to k-bounded channels.

Every unbounded execution is equivalent to a bounded execution.



Introduction Synchronizability Framework Conclusion

Boundedness

Underapproximations

Restrict to k-bounded channels. Too restricting!

Every unbounded execution is equivalent to a bounded execution.



Introduction Synchronizability Framework Conclusion

Boundedness

Underapproximations

Restrict to k-bounded channels. Too restricting!

Every unbounded execution is equivalent to a bounded execution.



Introduction Synchronizability Framework Conclusion

Synchronizability

blank blank

existentially k-bounded systems 1 2 - all accepting executions re-ordered to a k-bounded
execution.

1Lohrey and Muscholl, Bounded MSC communication, 2002
2Genest et al., A Kleene theorem for a class of communicating automata with effective algorithms, 2004



Introduction Synchronizability Framework Conclusion

Synchronizability

blank blank

existentially k-bounded systems 1 2

synchronizable systems 3 - send projection equivalent to rendezvous.

1Lohrey and Muscholl, Bounded MSC communication, 2002
2Genest et al., A Kleene theorem for a class of communicating automata with effective algorithms, 2004
3Basu and Bultan, Choreography conformance via synchronizability, 2011



Introduction Synchronizability Framework Conclusion

Synchronizability

blank blank

existentially k-bounded systems 1 2

synchronizable systems 3

k-synchronizable systems 4 - if every MSC admits a linearization that can be divided into
“blocks” of at most k messages.

1Lohrey and Muscholl, Bounded MSC communication, 2002
2Genest et al., A Kleene theorem for a class of communicating automata with effective algorithms, 2004
3Basu and Bultan, Choreography conformance via synchronizability, 2011
4Bouajjani et al., On the completeness of verifying message passing programs under bounded asynchrony,

2018



Introduction Synchronizability Framework Conclusion

Weakly k-synchronous MSCs

A k-exchange is an MSC that allows one to schedule all sends before all receives, and there are
at most k sends.



Introduction Synchronizability Framework Conclusion

Weakly k-synchronous MSCs

A k-exchange is an MSC that allows one to schedule all sends before all receives, and there are
at most k sends.

Definition

M is weakly k-synchronous if it is of the form M = M1 · . . . ·Mn such that every Mi is a
k-exchange.



Introduction Synchronizability Framework Conclusion

Weakly k-synchronous MSCs

A k-exchange is an MSC that allows one to schedule all sends before all receives, and there are
at most k sends.

Definition

M is weakly k-synchronous if it is of the form M = M1 · . . . ·Mn such that every Mi is a
k-exchange.

p q r

m1

m2

m3



Introduction Synchronizability Framework Conclusion

Weakly k-synchronous MSCs

An exchange is an MSC that allows one to schedule all sends before all receives and there are
at most k sends.

Definition

M is weakly synchronous if it is of the form M = M1 · . . . ·Mn such that every Mi is an
exchange.



Introduction Synchronizability Framework Conclusion

Weakly k-synchronous MSCs

An exchange is an MSC that allows one to schedule all sends before all receives and there are
at most k sends.

Definition

M is weakly synchronous if it is of the form M = M1 · . . . ·Mn such that every Mi is an
exchange.

q rp

m1

m
2

...

m
2

m 3

q rp

m
0

m2 m1

m3

m4



Introduction Synchronizability Framework Conclusion

MSO definability

Condition 1

The set of MSCs are MSO-definable.



Introduction Synchronizability Framework Conclusion

MSO definability



Introduction Synchronizability Framework Conclusion

MSO definability

matched(x) = ∃y .x C y indicates that x is a matched send.



Introduction Synchronizability Framework Conclusion

Special tree width

Condition 2

The set of MSCs have bounded special tree-width.

Adam-Eve play the decomposition game.

Eve “colours” some events on the MSC, removes edges between coloured events.

Adam chooses one of the resulting connected components.

Bounded special tree-width k if Eve can win (colour all vertices) with k + 1 colours.



Introduction Synchronizability Framework Conclusion

Special tree width

Condition 2

The set of MSCs have bounded special tree-width.

Adam-Eve play the decomposition game.

Eve “colours” some events on the MSC, removes edges between coloured events.

Adam chooses one of the resulting connected components.

Bounded special tree-width k if Eve can win (colour all vertices) with k + 1 colours.



Introduction Synchronizability Framework Conclusion

Special tree width

Condition 2

The set of MSCs have bounded special tree-width.

Adam-Eve play the decomposition game.

Eve “colours” some events on the MSC, removes edges between coloured events.

Adam chooses one of the resulting connected components.

Bounded special tree-width k if Eve can win (colour all vertices) with k + 1 colours.



Introduction Synchronizability Framework Conclusion

Special tree width

Condition 2

The set of MSCs have bounded special tree-width.

Adam-Eve play the decomposition game.

Eve “colours” some events on the MSC, removes edges between coloured events.

Adam chooses one of the resulting connected components.

Bounded special tree-width k if Eve can win (colour all vertices) with k + 1 colours.



Introduction Synchronizability Framework Conclusion

Special tree width

Condition 2

The set of MSCs have bounded special tree-width.

Adam-Eve play the decomposition game.

Eve “colours” some events on the MSC, removes edges between coloured events.

Adam chooses one of the resulting connected components.

Bounded special tree-width k if Eve can win (colour all vertices) with k + 1 colours.



Introduction Synchronizability Framework Conclusion

Special tree width

Condition 2

The set of MSCs have bounded special tree-width.

Adam-Eve play the decomposition game.

Eve “colours” some events on the MSC, removes edges between coloured events.

Adam chooses one of the resulting connected components.

Bounded special tree-width k if Eve can win (colour all vertices) with k + 1 colours.



Introduction Synchronizability Framework Conclusion

Crucial observation

Theorem

Let C be a class of MSCs. If C is MSO-definable and STW-bounded class, the following
problem is decidable: Given a communicating system S , do we have L(S) ⊆ C?



Introduction Synchronizability Framework Conclusion

Crucial observation

Theorem

Let C be a class of MSCs. If C is MSO-definable and STW-bounded class, the following
problem is decidable: Given a communicating system S , do we have L(S) ⊆ C?

Synchronizability for an STW-bounded class
reduces to−−−−−−→ bounded model-checking

Bounded model-checking −→ known to be decidable 5

5c.f. Bollig and Gastin, Non-sequential theory of distributed systems, 2019



Introduction Synchronizability Framework Conclusion

Applying the framework to Weakly synchronous MSCs

Result

The set of weakly synchronous MSCs are MSO-definable.



Introduction Synchronizability Framework Conclusion

Applying the framework to Weakly synchronous MSCs

Conflict graph

qp

a

e

b

c

a b

ce

SS

SSRS

SR



Introduction Synchronizability Framework Conclusion

Applying the framework to Weakly synchronous MSCs

Result

The set of weakly synchronous MSCs are MSO-definable.

Graphical characterization of weakly synchronous MSCs

No RS edge along any cycle

MSO definable!



Introduction Synchronizability Framework Conclusion

Applying the framework to Weakly synchronous MSCs

Result

The set of weakly synchronous MSCs has bounded STW.

Eve’s strategy - isolate each exchange, then remove message pairs

Uses at most 4n + 1 colours



Introduction Synchronizability Framework Conclusion

Summary of results

Class of MSCs Peer-to-Peer Mailbox

Weakly synchronous Undecidable EXPTIME

Weakly k-synchronous Decidable 6, 7

Strongly k-synchronous — Decidable

Existentially k-p2p-bounded Decidable 8

Existentially k-mailbox-bounded — Decidable

6Bouajjani et al., On the completeness of verifying message passing programs under bounded asynchrony,
2018

7Di Giusto et al., On the k-synchronizability of systems, 2020
8Genest et al., On communicating automata with bounded channels, 2007



Introduction Synchronizability Framework Conclusion

Comparison of classes

P2P systems

Weakly synchronizable

Existentially bounded

Universally
bounded

Weakly
k-synchronizable



Introduction Synchronizability Framework Conclusion

Comparison of classes

Mailbox systems

Weakly synchro.
Existentially

bounded

Weakly
k-synchro.

Strongly
synchro.

Strongly
k-synchro. Universally

bounded



Introduction Synchronizability Framework Conclusion

Contributions

Unifying framework for various notions of synchronizability.

Applicable to both mailbox and p2p communications.

LCPDL for better complexity.



Introduction Synchronizability Framework Conclusion

Thank you!


	Introduction
	Synchronizability 
	Framework
	Conclusion

