Verification of Input-bounded FIFO Machines

Amrita Suresh
Supervised by Prof. Alain Finkel

Laboratoire Spécification et Vérification, ENS Paris-Saclay

March-July 2019

Special thanks to Dr. Benedikt Bollig
Table of Contents

1. Introduction
2. Branch-WSTS
3. Reachability
FIFO Machines

Distributed processes such that

- each process is a finite state machine
- there are a fixed number of processes
- they communicate using queues
Example

Client-to-Server

Server-to-Client
Example

Client-to-Server

Server-to-Client
Example

Client

Server

Client-to-Server

Server-to-Client
Example
Example

Client-to-Server

Server-to-Client
A FIFO machine S with one channel c is defined as $S = (Q, \Sigma, T)$ where
- Q is a finite set of control-states,
- Σ is the alphabet,
- $T \subseteq Q \times \{!, ?\} \times \Sigma \times Q$ is the transition relation.

The system is said to be in a configuration $s = (q, w)$ when the control-state is q and the contents of the channel are w.
Formal definition

\[Q = \{ q_0, q_1, q_2, q_3 \} \]

\[\Sigma = \{ a, b \} \]

Figure: A FIFO system \(S \) with initial configuration \((q_0, \epsilon)\).
Verification problems

Give a FIFO machine S with an initial configuration $s_0 = (q_0, w_0)$,
- S terminates if it has no infinite run.
Verification problems

Give a FIFO machine S with an initial configuration $s_0 = (q_0, w_0)$,

- S terminates if it has no infinite run.
- S is bounded if $Post^*(s_0)$ is finite.
Verification problems

Give a FIFO machine S with an initial configuration $s_0 = (q_0, w_0)$,

- S terminates if it has no infinite run.
- S is bounded if $Post^*(s_0)$ is finite.

Note

Termination implies boundedness, but the converse is false.

\[(q_0, \epsilon) \rightarrow (q_1, a) \rightarrow (q_2, ab) \rightarrow (q_3, b) \rightarrow (q_0, \epsilon) \rightarrow \ldots \text{ is a non-terminating run.} \]

$Post^*(s_0)$ is bounded.
Verification problems

Give a FIFO machine S with an initial configuration $s_0 = (q_0, w_0)$,
- S terminates if it has no infinite run.
- S is bounded if $Post^*(s_0)$ is finite.

Theorem

Testing the unboundedness of a channel in a general FIFO system is undecidable.¹

Verification problems

Give a FIFO machine S with an initial configuration $s_0 = (q_0, w_0)$,

- S terminates if it has no infinite run.
- S is bounded if $Post^*(s_0)$ is finite.
- a configuration (q, w) is reachable if $\exists \sigma$ such that $(q_0, w_0) \xrightarrow{\sigma} (q, w)$.
Verification problems

Give a FIFO machine \(S \) with an initial configuration \(s_0 = (q_0, w_0) \),

- **\(S \) terminates** if it has no infinite run.
- **\(S \) is bounded** if \(\text{Post}^*(s_0) \) is finite.
- A configuration \((q, w)\) is **reachable** if \(\exists \sigma \) such that \((q_0, w_0) \xrightarrow{\sigma} (q, w)\).
- A **control-state \(q \) is reachable** if \(\exists \sigma \) and \(\exists w \) a channel valuation such that \((q_0, w_0) \xrightarrow{\sigma} (q, w)\).
Approach to verification

- Idea: to use over and under-approximations for verification
Approach to verification

- Idea: to use over and under-approximations for verification

- "Input-bounded FIFO systems" - an underapproximation
Some subclasses of FIFO systems

The following subclasses have decidable properties.

- *Half-duplex systems* with two processes (but extension to three processes leads to undecidability). (Cécé and Finkel 2005)
- *Lossy FIFO systems*. (Abdulla et al. 2004)
- *Existentially-bounded deadlock-free FIFO automata*. (Genest, Kuske, and Muscholl 2007)
- *Synchronisable FIFO systems*. (Alain Finkel and Lozes 2017)
- *Flat FIFO systems* (most verification problems are in \(NP\)). (Alain Finkel and Praveen 2019)
Input-bounded FIFO Systems

- **Bounded** language - \(L \subseteq w_1^* \ldots w_k^* \).
- **Input**-bounded - \(L_{send} \) is bounded.
Input-bounded FIFO Systems

- **Bounded** language - $L \subseteq w_1^* ... w_k^*$.
- **Input**-bounded - L_{send} is bounded.
- **Reachability**-bounded - Channel contents belong to a bounded language.

Theorem: A two-counter Minsky machine can be simulated by a reachability-bounded FIFO system.
Input-bounded FIFO Systems

- **Bounded** language - \(L \subseteq w_1^* \ldots w_k^* \).
- **Input**-bounded - \(L_{send} \) is bounded.
- **Reachability**-bounded - Channel contents belong to a bounded language.

Theorem

A two-counter Minsky machine can be simulated by a reachability-bounded FIFO system.
Table of Contents

1. Introduction
2. Branch-WSTS
3. Reachability
Well Structured Transition Systems (A. Finkel and Schnoebelen 2001)

- A wqo over a set X \implies every infinite sequence x_0, x_1, x_2, \ldots over X contains an increasing pair:
 $\exists i < j$ s.t. $x_i \leq x_j$.

Well Structured Transition Systems (A. Finkel and Schnoebelen 2001)

- A wqo over a set $X \implies$ every infinite sequence x_0, x_1, x_2, \ldots over X contains an increasing pair:
 $\exists i < j \text{ s.t. } x_i \leq x_j$.

- Example
 - \mathbb{N} over the ordering \leq is wqo.
 - \mathbb{Z} over the ordering \leq is not. e.g. $-1 \geq -2 \geq -3 \ldots$ has no increasing pair.
Well Structured Transition Systems (A. Finkel and Schnoebelen 2001)

- A wqo over a set X \implies every infinite sequence $x_0, x_1, x_2, ...$ over X contains an increasing pair:
 $\exists i < j$ s.t. $x_i \leq x_j$.
- The transition system (X, \rightarrow) has strong compatibility i.e.

\[
\begin{array}{ccc}
\delta & & \delta \\
\downarrow & & \downarrow \\
\delta & & \delta \\
\end{array}
\]

\[
\begin{array}{ccc}
s & \leq & t \\
\downarrow & & \downarrow \\
s' & \leq & t' \\
\end{array}
\]
Branch-WSTS

- $S = (X, \rightarrow, \leq)$ is branch-WSTS if it is
 - branch-wqo
 - if for every infinite run $n_0(x_0) \rightarrow n_1(x_1) \rightarrow n_2(x_2), \ldots$ of S, x_0, x_1, \ldots is wqo.
\(S = (X, \rightarrow, \leq) \) is branch-WSTS if it is branch-wqo

- if for every infinite run \(n_0(x_0) \rightarrow n_1(x_1) \rightarrow n_2(x_2), \ldots \) of \(S \), \(x_0, x_1, \ldots \) is wqo.

This FIFO system is branch-wqo under the prefix ordering but it is not wqo.
Branch-WSTS

- \(S = (X, \rightarrow, \leq) \) is \textit{branch-WSTS} if it is
- \textit{branch-wqo}
- \textit{branch-compatible}
 - if for all configurations \(s, t, s' \) such that \(s \preceq t \) and \(s \xrightarrow{a} s' \xrightarrow{w} t \) implies that there exists a \(t' \) such that \(t \xrightarrow{a} t' \) and \(s' \preceq t' \).

\[\begin{array}{ccc}
 s & \ll & t \\
 \downarrow a & & \downarrow a \\
 s' & \ll & t' \\
 \downarrow w & & \downarrow w
\end{array}\]
Finite Reachability Tree

$q_0 \xrightarrow{!a} q_1 \xrightarrow{?a} q_2 \xrightarrow{!b} q_0$,

q_0, ϵ

Finite Reachability Tree\(^1\)

\[q_0 \xrightarrow{!a} q_1 \xrightarrow{?a} q_2 \]

\[q_0, \epsilon \]

\[q_1, a \]

Finite Reachability Tree\(^1\)

Adapted from A. Finkel and Ph. Schnoebelen (2001). “Well-structured transition systems everywhere!”.

Finite Reachability Tree

\[q_0 \xrightarrow{!a} q_1 \xrightarrow{?a} q_2 \]

\[q_0, \epsilon \]

\[q_1, a \]

\[q_1, ab \]

\[q_2, \epsilon \]

\[q_2, b \]

\[X \]

\[X \]

Why branch-WSTS?

Theorem

Boundedness and termination are decidable for branch-WSTS, if \leq is a decidable, partial ordering, and has computable successor.
Why branch-WSTS?

Theorem

Boundedness and termination are decidable for branch-WSTS, if \leq is a decidable, partial ordering, and has computable successor.

Proof sketch

- A branch-WSTS $S = (S, \rightarrow, \leq)$ has a finite reachability tree.
- Unbounded iff there exist two configurations in the finite reachability tree such that $s_1 \xrightarrow{*} s_2$ and $s_1 < s_2$.
- Non-terminating iff there exists a subsumed node in the FRT.
Input-bounded FIFO systems over the prefix-ordering

Theorem

Input-bounded FIFO automata are branch-wqo for the prefix-ordering \leq_{pref}.

But they are not branch-compatible.

Figure: Consider S, and configurations (q_1, ϵ) and (q_1, a).
Prefix compatible relation

For two configurations \(s = (q, w), s' = (q', w') \), \((q, w) \preceq_{\text{comp}} (q', w')\) if
- \((q, w) \preceq_{\text{pref}} (q', w')\) and
- \(\exists \sigma\) (with send and receive actions \(y_{\sigma}\) and \(x_{\sigma}\) resp.) such that \(s \xrightarrow{\sigma} s'\) and
 - \(x_{\sigma} = \epsilon\) or
 - \(|x_{\sigma}| \leq |y_{\sigma}|\) and \(x_{\sigma}^{\omega} = w.y_{\sigma}^{\omega}\).

Theorem

FIFO systems are branch-compatible for the relation \(\preceq_{\text{comp}}\).
The prefix compatible relation is not an ordering.

Theorem

Under this relation, we can construct a finite reachability tree for input-bounded FIFO systems.2

Termination

Theorem

Termination is decidable for input-bounded FIFO systems
Table of Contents

1. Introduction
2. Branch-WSTS
3. Reachability
Reachability results

Theorem
Reachability and control-state reachability are reducible to one another for input-bounded FIFO systems.
Reachability of input-letter bounded systems

Theorem

Control state reachability for input-letter bounded FIFO systems is decidable.
Proof idea

Input-letter bounded FIFO systems can be simulated by counter machines with hierarchical zero tests.

A FIFO machine S.

\[q_0 \xrightarrow{\epsilon} q_1 \]

\[q_0 \overset{!a}{\xrightarrow{}} q_1 \]

\[q_1 \overset{a}{\xrightarrow{\epsilon}} q_0 \]

\[q_1 \overset{!b}{\xrightarrow{}} q_0 \]

\[q_0 \overset{c_a++}{\xrightarrow{}} q_1 \]

\[q_1 \overset{c^\prime_{a} --}{\xrightarrow{}} q_0 \]

\[q_0 \overset{c_b++}{\xrightarrow{}} q_1 \]
Proof idea

Input-letter bounded FIFO systems can be simulated by counter machines with hierarchical zero tests.

Counter automata corresponding to the FIFO machine S.
Conclusion

<table>
<thead>
<tr>
<th>System</th>
<th>Boundedness</th>
<th>Termination</th>
<th>Reachability</th>
</tr>
</thead>
<tbody>
<tr>
<td>General FIFO systems</td>
<td>No [B83]</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Lossy Channel systems</td>
<td>Yes [A04]</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flat Systems</td>
<td>Yes [F19]</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Reachability Bounded systems</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input-bounded systems</td>
<td>Yes [J93]</td>
<td>Yes</td>
<td>?</td>
</tr>
<tr>
<td>Input-different-letter bounded systems</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes [F87]</td>
</tr>
<tr>
<td>Input-letter bounded systems</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table: Verification problems
Thank you!
Questions?
The half-duplex property for two machines and two channels (one in each direction) says that each reachable configuration has at most one channel non-empty.

Choquet, A and A Finkel (1987). “Simulation of linear FIFO nets having a structured set of terminal markings”. In:

Finkel, Alain and Etienne Lozes (2017). “Synchronizability of communicating finite state machines is not decidable”. In: ICALP.

