Verification of Input-bounded FIFO Machines

Amrita Suresh Supervised by Prof. Alain Finkel

Laboratoire Spécification et Vérification, ENS Paris-Saclay

March-July 2019

Special thanks to Dr. Benedikt Bollig

Amrita Suresh (LSV)

Verification of Input-bounded FIFO Machines

Table of Contents

3

(日) (同) (三) (三)

FIFO Machines

Distributed processes such that

each process is a finite state machine

• there are a fixed number of processes

・ 同 ト ・ ヨ ト ・ ヨ ト

Amrita Suresh (LSV)

Verification of Input-bounded FIFO Machines

March-July 2019 4 / 25

Amrita Suresh (LSV)

Verification of Input-bounded FIFO Machines

March-July 2019 4 / 25

Formal definition

A FIFO machine S with one channel c is defined as $S = (Q, \Sigma, T)$ where

- Q is a finite set of control-states,
- Σ is the alphabet,
- $T \subseteq Q \times \{!, ?\} \times \Sigma \times Q$ is the transition relation.

The system is said to be in a configuration s = (q, w) when the control-state is q and the contents of the channel are w.

イロト 不得下 イヨト イヨト

Formal definition

Figure: A FIFO system S with initial configuration (q_0, ϵ)

3

Give a FIFO machine S with an initial configuration $s_0 = (q_0, w_0)$, • S terminates if it has no infinite run.

3

(日) (同) (三) (三)

Give a FIFO machine S with an initial configuration $s_0 = (q_0, w_0)$,

- S terminates if it has no infinite run.
- S is bounded if $Post^*(s_0)$ is finite.

3

Give a FIFO machine S with an initial configuration $s_0 = (q_0, w_0)$,

- S terminates if it has no infinite run.
- S is bounded if $Post^*(s_0)$ is finite.

Note

Termination implies boundedness, but the converse is false.

 $(q_0, \epsilon) \rightarrow (q_1, a) \rightarrow (q_2, ab) \rightarrow (q_3, b) \rightarrow (q_0, \epsilon) \rightarrow ...$ is a non-terminating run. $Post^*(s_0)$ is bounded.

Give a FIFO machine S with an initial configuration $s_0 = (q_0, w_0)$,

- \mathcal{S} terminates if it has no infinite run.
- S is bounded if $Post^*(s_0)$ is finite.

Theorem

Testing the unboundedness of a channel in a general FIFO system is $\mbox{undecidable}.^1$

6 / 25

Give a FIFO machine S with an initial configuration $s_0 = (q_0, w_0)$,

- S terminates if it has no infinite run.
- S is bounded if $Post^*(s_0)$ is finite.

• a configuration (q, w) is reachable if $\exists \sigma$ such that $(q_0, w_0) \xrightarrow{\sigma} (q, w)$.

- 4 同 6 4 日 6 4 日 6

Give a FIFO machine S with an initial configuration $s_0 = (q_0, w_0)$,

- S terminates if it has no infinite run.
- S is bounded if $Post^*(s_0)$ is finite.
- a configuration (q, w) is reachable if $\exists \sigma$ such that $(q_0, w_0) \xrightarrow{\sigma} (q, w)$.
- a control-state q is reachable if $\exists \sigma$ and $\exists w$ a channel valuation such that $(q_0, w_0) \xrightarrow{\sigma} (q, w)$.

Approach to verification

• Idea: to use over and under-approximations for verification

Approach to verification

• Idea: to use over and under-approximations for verification

• "Input-bounded FIFO systems" - an underapproximation

Amrita Suresh (LSV)

Verification of Input-bounded FIFO Machines

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Some subclasses of FIFO systems

The following subclasses have decidable properties.

- *Half-duplex systems* with two processes (but extension to three processes leads to undecidability). (Cécé and Finkel 2005)
- Lossy FIFO systems. (Abdulla et al. 2004)
- *Existentially-bounded deadlock-free FIFO automata**. (Genest, Kuske, and Muscholl 2007)
- Synchronisable FIFO systems*. (Alain Finkel and Lozes 2017)
- *Flat FIFO systems* (most verification problems are in *NP*). (Alain Finkel and Praveen 2019)

Input-bounded FIFO Systems

- Bounded language $L \subseteq w_1^* \dots w_k^*$.
- *Input*-bounded *L_{send}* is bounded.

3

イロト 不得下 イヨト イヨト

Input-bounded FIFO Systems

- Bounded language $L \subseteq w_1^* \dots w_k^*$.
- *Input*-bounded *L_{send}* is bounded.
- *Reachability*-bounded Channel contents belong to a bounded language.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Input-bounded FIFO Systems

- Bounded language $L \subseteq w_1^* \dots w_k^*$.
- *Input*-bounded *L_{send}* is bounded.
- *Reachability*-bounded Channel contents belong to a bounded language.

Theorem

A two-counter Minsky machine can be simulated by a reachability-bounded FIFO system.

Table of Contents

Amrita Suresh (LSV)

Verification of Input-bounded FIFO Machines

3

Well Structured Transition Systems (A. Finkel and Schnoebelen 2001)

- A wqo over a set X ⇒ every infinite sequence x₀, x₁, x₂,... over X contains an increasing pair:
 - $\exists i < j \text{ s.t. } x_i \leq x_j.$

- 3

イロト 不得下 イヨト イヨト

Well Structured Transition Systems (A. Finkel and Schnoebelen 2001)

- A wqo over a set X ⇒ every infinite sequence x₀, x₁, x₂,... over X contains an increasing pair: ∃i < j s.t. x_i ≤ x_i.
- Example
 - \mathbb{N} over the ordering \leq is wqo.
 - $\mathbb Z$ over the ordering \leq is not. e.g. $-1\geq -2\geq -3...$ has no increasing pair.

Well Structured Transition Systems (A. Finkel and Schnoebelen 2001)

- A wqo over a set X ⇒ every infinite sequence x₀, x₁, x₂,... over X contains an increasing pair:
 ¬i < i < t < x
 - $\exists i < j \text{ s.t. } x_i \leq x_j.$
- The transition system (X, \rightarrow) has strong compatibility i.e.

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Branch-WSTS

- $\mathcal{S} = (X, \rightarrow, \leq)$ is *branch-WSTS* if it is
- branch-wqo
 - if for every infinite run $n_0(x_0) \rightarrow n_1(x_1) \rightarrow n_2(x_2), ...$ of \mathcal{S} , $x_0, x_1, ...$ is wqo.

イロト イポト イヨト イヨト

Branch-WSTS

- $\mathcal{S} = (X, \rightarrow, \leq)$ is *branch-WSTS* if it is
- branch-wqo
 - if for every infinite run $n_0(x_0) \rightarrow n_1(x_1) \rightarrow n_2(x_2), ...$ of \mathcal{S} , $x_0, x_1, ...$ is wqo.

This FIFO system is branch-wqo under the prefix ordering but it is not wqo.

3

- 4 同 6 4 日 6 4 日 6

Branch-WSTS

- $\mathcal{S} = (X, \rightarrow, \leq)$ is *branch-WSTS* if it is
- branch-wqo
- branch-compatible
 - if for all configurations s, t, s' such that $s \leq t$ and $s \xrightarrow{a} s' \xrightarrow{w} t$ implies that there exists a t' such that $t \xrightarrow{a} t'$ and $s' \leq t'$.

¹Adapted from A. Finkel and Ph. Schnoebelen (2001). "Well-structured transition systems everywhere!". In: *Theoretical Computer Science* 256.1, _pp. 63-92 ≥ 2 0 0 0 Amrita Suresh (LSV) Verification of Input-bounded FIFO Machines March-July 2019 13 / 25

¹Adapted from A. Finkel and Ph. Schnoebelen (2001). "Well-structured transition systems everywhere!". In: *Theoretical Computer Science* 256.1, app. 63-92 ≥ → ≥ ∽ ⊲ ⊂ Amrita Suresh (LSV) Verification of Input-bounded FIFO Machines March-July 2019 13 / 25

Х

¹Adapted from A. Finkel and Ph. Schnoebelen (2001). "Well-structured transition systems everywhere!". In: *Theoretical Computer Science* 256.1, app. 63–92 **E** Soc Amrita Suresh (LSV) Verification of Input-bounded FIFO Machines March-July 2019 13 / 25

Why branch-WSTS?

Theorem

Boundedness and termination are decidable for branch-WSTS, if \leq is a decidable, partial ordering, and has computable successor.

< 🗇 🕨 < 🖃 🕨

Why branch-WSTS?

Theorem

Boundedness and termination are decidable for branch-WSTS, if \leq is a decidable, partial ordering, and has computable successor.

Proof sketch

- A branch-WSTS $\mathcal{S} = (S, \rightarrow, \leq)$ has a finite reachability tree.
- Unbounded iff there exist two configurations in the finite reachability tree such that $s_1 \xrightarrow{*} s_2$ and $s_1 < s_2$.
- Non-terminating iff there exists a subsumed node in the FRT.

・ 同 ト ・ ヨ ト ・ ヨ ト

Input-bounded FIFO systems over the prefix-ordering

Theorem

Input-bounded FIFO automata are branch-wqo for the prefix-ordering $\leq_{\textit{pref}}$.

But they are not branch-compatible.

Figure: Consider S, and configurations (q_1, ϵ) and (q_1, a)

Amrita Suresh (LSV)

Verification of Input-bounded FIFO Machines

Prefix compatible relation

For two configurations $s = (q, w), s' = (q', w'), (q, w) \preceq_{comp} (q', w')$ if

- $(q, w) \leq_{pref} (q', w')$ and
- $\exists \sigma$ (with send and receive actions y_{σ} and x_{σ} resp.) such that $s \xrightarrow{\sigma} s'$ and
- $x_{\sigma} = \epsilon$ or
- $|x_{\sigma}| \leq |y_{\sigma}|$ and $x_{\sigma}^{\omega} = w.y_{\sigma}^{\omega}$).

Theorem

FIFO systems are branch-compatible for the relation \leq_{comp} .

< 回 ト < 三 ト < 三 ト

Termination

• The prefix compatible relation is not an ordering.

Theorem

Under this relation, we can construct a finite reachability tree for input-bounded FIFO systems.²

Termination

Theorem

Termination is decidable for input-bounded FIFO systems

Amrita Suresh (LSV)

Verification of Input-bounded FIFO Machines

March-July 2019 17 / 25

3

(日) (同) (三) (三)

Table of Contents

2 Branch-WSTS

3

イロト イヨト イヨト イヨト

Reachability results

Theorem

Reachability and control-state reachability are reducible to one another for input-bounded FIFO systems.

3

- ∢ ≣ →

A (1) > A (2) > A

Reachability of input-letter bounded systems

Theorem

Control state reachability for input-letter bounded FIFO systems is decidable.

Amrita Suresh (LSV)

Verification of Input-bounded FIFO Machines

March-July 2019

3

< 回 > < 三 > < 三 >

20 / 25

Proof idea

Input-letter bounded FIFO systems can be simulated by counter machines with hierarchical zero tests.

Ca++ q_0 q_1 C_b ++

machine S.

3

- N

A 🖓

Proof idea

Input-letter bounded FIFO systems can be simulated by counter machines with hierarchical zero tests.

Counter automata corresponding to the FIFO machine \mathcal{S} .

Amrita Suresh (LSV)

< 🗇 🕨 < 🖃 🕨

Conclusion

System	Boundedness	Termination	Reachability
General FIFO systems	No [B83]		
Lossy Channel systems	Yes [A04]	Yes	Yes
Flat Systems	Yes [F19]	Yes	Yes
Reachability Bounded systems	No		
Input-bounded systems	Yes [J93]	Yes	?
Input-different-letter			
bounded systems	Yes	Yes	Yes [F87]
Input-letter bounded systems	Yes	Yes	Yes

Table: Verification problems

Ξ.

<ロ> (日) (日) (日) (日) (日)

22 / 25

Thank you! Questions?

Amrita Suresh (LSV)

Verification of Input-bounded FIFO Machines

March-July 2019

<ロ> (日) (日) (日) (日) (日)

22 / 25

Some additional information

 The half-duplex property for two machines and two channels (one in each direction) says that each reachable configuration has at most one channel non-empty.

- 4 同 6 4 日 6 4 日 6

- Abdulla, Parosh Aziz et al. (2004). "Using forward reachability analysis for verification of lossy channel systems". In: *Formal Methods in System Design* 25.1, pp. 39–65.
- Brand, Daniel and Pitro Zafiropulo (1983). "On communicating finite-state machines". In: *Journal of the ACM (JACM)* 30.2, pp. 323–342.
- Cécé, Gérard and Alain Finkel (2005). "Verification of programs with half-duplex communication". In: *Information and Computation* 202.2, pp. 166–190.
- Choquet, A and A Finkel (1987). "Simulation of linear FIFO nets having a structured set of terminal markings". In:
- Finkel, Alain and Etienne Lozes (2017). "Synchronizability of communicating finite state machines is not decidable". In: *ICALP*.
- Finkel, Alain and M Praveen (2019). "Verification of Flat FIFO Systems". In: *CONCUR'19*. Leibniz International Proceedings in Informatics. To appear.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Finkel, A. and Ph. Schnoebelen (2001). "Well-structured transition systems everywhere!". In: *Theoretical Computer Science* 256.1, pp. 63–92.
- Genest, Blaise, Dietrich Kuske, and Anca Muscholl (2007). "On communicating automata with bounded channels". In: *Fundamenta Informaticae* 80.1-3, pp. 147–167.
- Jéron, Thierry and Claude Jard (1993). "Testing for Unboundedness of FIFO Channels.". In: *Theor. Comput. Sci.* 113, pp. 93–117.