
Termination, Boundedness and Reachability for

Input-bounded FIFO Machines

Amrita Suresh
Supervised by Prof. Alain Finkel

Laboratoire Spécification et Vérification, ENS Paris-Saclay

August 20, 2019

General Context

Software systems are becoming increasingly more concurrent and distributed. Asynchronous
distributed systems are widely used from web services, to multi-core architectures. However,
error detection is not easy in such systems, especially because the executions are difficult to
reproduce and channel contents could be unbounded. In general, we consider finite machines
communicating via unbounded channels (henceforth called FIFO systems). These models have
the power of Turing machines, which leads to undecidability results in their verification [3]. One
way of analysing such systems would be to find approximations which have decidable results and
are hence, easier to verify. We could then test properties on these approximations in order to
get a semi-decidable results on the system.

Research Problem

My internship focuses on an under-approximation of FIFO systems, known as “input-bounded
FIFO systems”, which restricts the send operations on every channel to a bounded language, i.e.
a language of the form w∗1w

∗
2 ...w

∗
k. However, this type of system has not been extensively studied

in the past, while restrictions of the approximation have been studied in [11, 13, 5]. The aim of
my internship was to analyse these systems, and see if we can obtain decidability results on the
boundedness, termination, and reachability of such systems.

Proposed Contributions

We were able to provide decidability results for the termination and boundedness of input-
bounded FIFO systems. In order to do so, we introduced the notion of branch well structured
transition systems (branch WSTS). This is a generalisation of the idea of well-structured tran-
sition systems [8]. We showed that the conditions for branch WSTS are sufficient conditions for
verifying the boundedness and termination of the system.

We also found that increasing the power of input-bounded FIFO systems slightly, and instead
considering FIFO systems whose channel contents are always a bounded language, leads us back
to undecidability. We showed that such machines can simulate Minsky machines.

Furthermore, we proved that reachability is decidable in a subclass of input bounded FIFO
systems, where every word wi is just a letter, i.e. input-letter bounded FIFO systems. We
further conjecture that using a similar construction, reachability is decidable for the entire class of

1



input-bounded FIFO systems and thus, input-bounded FIFO systems have decidable verification
properties.

Arguments Supporting its Validity

The questions of boundedness, termination, and reachability of input-bounded FIFO systems
have not been known before. The results of this internship show that they can be promising
under-approximations for the general aynchronous distributed processes communicating using
perfect queues. Furthermore, we introduce a new generalisation of well-structured systems which
can analyse the boundedness and termination of systems which are not well-structured, but still
share some properties with such systems. These underapproximations can be practically used to
verify negative results for the class of asynchronous distributed processes. Furthermore, from a
theoretical perspective, they show that the class we consider are still very powerful, since a slight
modification leads us back to undecidability.

Summary and Future Work

The approach of understanding FIFO systems using over and under-approximations is a inter-
esting way forward. We have some interesting subclasses which have decidable properties, and
verification of general FIFO systems may be possible by using these approximations using a
semi-decidable algorithm.

Another interesting approach forward would be to analyse the complexity of these problems.
If they have efficient solutions, we could implement these solutions to partially analyse the system.
It would also be interesting to further explore the generalizations of WSTS that we have defined.
Another open problem is whether the problem of coverability is decidable for input-bounded
FIFO systems.

Acknowledgements

I would like to, first and foremost, thank my advisor Prof. Alain Finkel for his infinite patience,
keen insights, and unending support. My stay at LSV was very fruitful largely because of the
constructive and educational discussions I had with him. Furthermore, I would like to thank Dr.
Benedikt Bollig and Dr. Philippe Schnoebelen for their time, and for enriching my internship
experience. I would also like to thank all the members of the LSV, including the PhD students
and the guests, for fostering a wonderful research environment with interesting and informative
discussions. I would also like to thank Mrs. Imane Mimouni and Mr. Hugues Moretto-Viry for
the administrative and technical support. Finally, I would like to thank Prof. Olivier Carton
and Prof. Gilles Dowek for all the support during the course of the program.

2



1 Introduction

Asynchronous distributed processes communicating using First In First Out (FIFO) channels are
being widely used for distributed and concurrent programming, and more recently, for web service
choreographies. Since such machines simulate Turing machines, most reachability properties are
undecidable for such systems. For example, testing the unboundedness of a channel is undecidable
[3].

FIFO subclasses with a decidable reachability problem are few, as the model is very powerful.
In fact, FIFO systems with a single channel can simulate Turing machines. However, there have
been a few decidability results on some subclasses.

Decidable subclasses Half-duplex systems [4] (with two processes) have been known to have
certain decidable properties, but the natural extension to three processes leads to undecidability.
Apart from this, lossy FIFO systems [1], which are an overapproximation of the general FIFO
behaviour (where the channels are no longer perfect) have been shown to be well-structured.

Apart from these, existentially-bounded deadlock-free FIFO automata [12] and synchronis-
able FIFO systems [10] have decidable properties, but it is undecidable to check if a system is
existentially bounded or has the sychronisability property.

Some other methods such as bounded exploration have been employed to investigate this
problem further. A recent technique [14] combines a bounded exploration with a convergence
test: if the sequence of certain abstractions of the reachable states, for increasing queue bounds,
converges, the property is provable. In [7], the authors prove that the control-state reachability
modulo bounded languages is decidable for such systems.

Input-bounded FIFO systems Another interesting subclass of FIFO systems are FIFO
systems with a bounds on the input-language of the system. The reachability for different-letter-
bounded FIFO systems were shown to be reducible to reachability in a special class of Petri nets
(with structured terminal markings) [5]. Furthermore, the termination of input-letter bounded
FIFO systems was shown to decidable in [13]. However, apart from these results, little has been
explored regarding these systems - testing whether a given system is input-bounded is believed
to be undecidable. Hence, a particularly interesting subclass of input-bounded FIFO systems,
known as flat FIFO systems has been of interest. It was shown that various reachability problems
are NP-complete for such systems [11].

Proposed contributions We introduce a generalisation on well-structured transition sys-
tems which is sufficient to verify boundedness and termination of input-bounded FIFO systems.
We also show that reachability is decidable for a subclass of such systems, namely, input-letter-
bounded FIFO systems, and conjecture that it holds for input-bounded systems as well. We also
show that slight extensions of the model lead back to undecidability.

2 Preliminaries

A binary relation ≤ over a set A is a quasi ordering (qo) iff it is reflexive and transitive. A quasi
ordering ≤ is a partial ordering iff it is antisymmetric, i.e a ≤ b and b ≤ a =⇒ a = b. When ≤
is a partial ordering then a < b is equivalent to a ≤ b and a 6= b.

Definition 2.1. A well quasi ordering (wqo) ≤ over a set A is a qo such that every infinite
sequence x0, x1, x2, ... over A contains an increasing pair : ∃i < j s.t. xi ≤ xj .

There is an equivalent characterisation of wqos from a result by Erdős and Rado.

3



Proposition 2.1 ([6]). Assume (A,≤) is a wqo. Then every infinite sequence in A has an
infinite increasing subsequence.

For example, the set of natural numbers N, along with the standard ordering ≤ over it, is a
well quasi ordering. On the other hand, the prefix ordering of words over an alphabet Σ, denoted
by �, is not a well quasi ordering. Consider the alphabet Σ = {a, b}. There exists an infinite
antichain b, ab, aab, ... of the prefix ordering.

A transition system is defined as S = 〈S,→〉, where S is a set of states, and → ⊆ S × S. We

write s −→ s′ for (s, s′) ∈ →. Let
∗−→ be the transitive and reflexive closure of the relation →. We

write PostS(s) = {s′ ∈ S|s −→ s′} for the set of immediate successors of the state s. S is finitely
branching if for all s ∈ S, PostS(s) is finite. The reachability set of a transition system 〈S,→〉
from an initial state s0 is Post∗S(s0) = {s ∈ S|s0

∗−→ s}.

Definition 2.2 (Ordered transition system). An ordered transition system S = (X,→,≤) con-
sists of a wqo (X,≤) and a transition relation → ⊆ X ×X.

We now define the notion of well-structured transition systems (WSTS).

Definition 2.3. A well structured transition system S = (S,→,≤) is a transition system en-
dowed with a wqo ≤ ⊆ S × S that satisfies a strong compatibility condition:

s→ s′ ∧ t ≥ s =⇒ ∃t′ ≥ s′, t→ t′. (1)

3 Branch WSTS

For termination and boundedness of infinite transition systems, we see that we only need to
consider configurations which are reachable from one other. Hence, we generalize the definition
of wqo and compatibility such that the ordering only considers configurations along a run of the
system. We shall see that this definition can aid in deciding termination and boundedness of
systems which may, in general, not be well structured or well quasi ordered.

The whole behaviour of a transition system S can be described as a directed (possibly infinite)
labelled tree called the reachability tree. We first define this tree.

Definition 3.1 (Reachability tree). Given a transition system S with the initial state x0, the
reachability tree is defined by the following rules.

• the root n0 is labelled with the initial state x0,

• all the nodes are labelled with a reachable state, we will use n to describe the node corre-
sponding to state s, or n(x)

• edges are labelled with fireable actions.

Using this definition, we introduce the notion of branch-wqo and branch-compatibility. A
branch refers to one path starting from the initial configuration.

Definition 3.2. An ordered transition system S = (X,→,≤) is branch-well quasi ordering
(branch-wqo) if every infinite labeled branch n0(x0) → n1(x1) → n2(x2), ... of the reachability
tree of S is wqo.

4



From Proposition 2.1, it follows that in a branch-wqo, every infinite labeled branch has an
infinite strictly increasing sequence.

A wqo over X is a branch-wqo on every tree labeled by X. The converse is false, consider
the tree where each branch of length n+ 1 is labeled by anb. The system is not wqo under the
prefix ordering, but the tree is branch-wqo.

We modify the definition of (strong) compatibility, and extend it to (strong) branch-compatibility,
which only considers the (strong) compatibility of states which are reachable from one another.

Definition 3.3 (Strong branch-compatibility). Let S be an ordered transition system S = (X,→
,≤). For all configurations s, t, s′ such that s ≤ t and for all w ∈ Σ∗ and for all a ∈ Σ, s

a−→ s′
w−→ t

implies that there exists a configuration t′ such that t
a−→ t′ and s′ ≤ t′.

And using these two modified definitions, we have the following notion of branch WSTS.

Definition 3.4 (Branch WSTS). An ordered transition system S = (S,→,≤) is branch WSTS
(resp. with strong monotony) if S is (resp. strongly) branch-compatible and branch-wqo.

Definition 3.5 (Strict branch-compatibility). Let S be a branch WSTS S = (X,→,≤). For all

configurations s, t, s′ and for all a ∈ Σ, w ∈ Σ∗ such that s < t and s
a−→ s′

w−→ t there exists a
configuration t′ such that t

a−→ t′ and s′ < t′.

Remark. Every WSTS is branch WSTS because compatibility implies branch-compatibility and
further, wqo implies branch-wqo. However, the converse result does not hold true. A counter-
example to this is the transition system that we are going to describe in the next section in figure
2. It is branch WSTS but is not WSTS.

We see that there are some interesting decidability results for branch WSTS.

Definition 3.6 (FRT). For any configuration s ∈ S, where S = (S,→,≤) is an ordered transition
system, FRT (S, s), the Finite Reachability Tree defined in [8] from s is a directed unordered tree
where nodes are labeled by configurations of S. Nodes are either dead or live. The root node is
a live node n0, labeled by s0. A dead node has no child node. A live node n, corresponding to
configuration t has one child n′ for each successor t′ ∈ PostS(t). If along the path from the root
to some node n (corresponding to the configuration t), there exists a node n′ (corresponding to
the configuration t′) such that t′ ≤ t, we say that n′ subsumes n, and then n is a dead node.
Otherwise, n is live.

Definition 3.7. If we expand the definition of an FRT, and also subsume nodes t, t′ if t′ −→ t
and t ≤ t′, the resulting tree is an antichain reachability tree (AT), defined in [2].The antichain
tree is shorter than the finite reachability tree, since if a node is subsumed in the FRT, it is
subsumed in the AT. Furthermore, if there is an infinitely long strictly decreasing chain, it is
finite in the AT but not in the FRT.

Proposition 3.1. A finitely branching transition system S = (S,→,≤) that is branch-wqo has
a finite FRT. Hence, it has a finite AT.

Proof. Let us assume that the FRT is infinite. Since the transition system is finitely branching,
for the FRT to be infinite, there has to be an infinitely long branch with an infinite run. But
since the system is branch-wqo, there exist two configurations s, s′ such that s ≤ s′ and s

∗−→ s′

in the given infinite run. In that case, the node s′ is marked as dead, and the tree is not explored
any further. Thus, there is a contradiction. Hence, the FRT, and as a result, the AT also, is
finite.

5



We look at two important properties for transition systems without potentially infinite states.
They are as follows.

Problem (Termination). A transition system S is said to be terminating at an initial configu-
ration s0 if it has no infinite run starting from s0.

Problem (Boundedness). A transition system S is said to be bounded at an initial configuration
s0 if the set of reachable states, i.e. Post∗(s0) is finite.

The following proof is the generalization of the proof of Proposition 4.10 in [8].

Proposition 3.2. A branch WSTS, with strict compatibility and ≤ a partial ordering, is un-
bounded iff there exist two configurations in the finite reachability tree such that s1

∗−→ s2 and
s1 < s2.

Proof. Let us assume the system is unbounded, i.e. Post∗S(s0) is infinite. Then, there are an
infinite number of distinct configurations which are reachable from s0. We first show that there
exists a computation starting from s0 without any loop, where all configurations are distinct.
We consider the finitely branching tree of all prefixes of computations, and prune this tree by
removing prefixes which contain a loop. Because any reachable configuration can be reached
without a loop, the pruned tree still contains an infinite number of prefixes. By Konig’s lemma,
there exists an infinite computation with no loop. Any computation starting from s0 has a finite
prefix labeling a maximal path in the FRT. Hence, there must be a node s2 which is subsumed
by a node s1 such that s1 6= s2. Since we assumed ≤ to be a partial ordering, and s1 ≤ s2, we
have s1 < s2.

Conversely, let us assume that there exist two nodes s1, s2 in FRT such that s1
σ−→ s2 and

s1 < s2 with σ = a1a2...an hence there exist t1, t2, ..., tn such that s1
a1−→ t1

a2−→ t2
a3−→ ...

an−−→
tn = s2.

Since the system is strictly branch compatible, there exist u1, u2, ..., un such that s2
a1−→ u1

a2−→
u2...

an−−→ un with t1 < u1 , t2 < u2 ... and tn < un. By iterating this process, we construct
an infinite sequence of configurations (sk)k≥0 such that for all k ≥ 1 one have sk

σ−→ sk+1 and
sk < sk+1. Hence, Post∗S(s0) is infinite, and S is unbounded.

We may also generalize Proposition 4.5. for WSTS in [8] to branch WSTS, the proof is
essentially the same as in [8].

Proposition 3.3. Branch WSTS is non-terminating iff there exists a subsumed node in the
FRT.

Proof. Let us assume that the system is non-terminating, i.e. it has at least one infinite run.
When we look at the prefix of the run on the FRT, since the FRT is finite, it ends in a dead
node, say s2, which means that there is a node s1 in the run which subsumes s2.

Conversely, if there is a subsumed node in the FRT, there is a non empty run and two
configurations s1, s2 such that s1

σ−→ s2 and s1 ≤ s2, where σ = a1...an and σ 6= ε. Hence
there exist t1, t2, ..., tn such that s1

a1−→ t1
a2−→ t2

a3−→ ...
an−−→ tn = s2. Since the system is

strongly branch compatible, there exist u1, u2, ..., un such that s2
a1−→ u1

a2−→ u2...
an−−→ un with

t1 ≤ u1, t2 ≤ u2 ... and tn ≤ un. By iterating this process, we construct an infinite sequence of
configurations (sk)k≥0 such that for all k ≥ 1 one have sk

σ−→ sk+1 and sk ≤ sk+1. Hence, we
have an infinite computation, and the system is non-terminating.

The two above propositions give us the following result.

6



Theorem 3.1. Termination is decidable for strict branch WSTS, with a decidable quasi-ordering
≤, and computable successor. Furthermore, if ≤ is a partial ordering with strict branch compat-
ibility, boundedness is also decidable.

Proof. We can construct the FRT for the branch WSTS since it is finite and we can compute
the successors. If we find a node which is subsumed (by a strictly larger node for checking
boundedness), then we can conclude non-termination (resp. unboundedness). This is possible
since the ordering ≤ is decidable.

Remark. For branch WSTS, we see that we cannot determine termination or boundedness using
the AT like we can using the FRT. Look at the following counter-example 1.

If we consider the below FIFO machine (which is branch WSTS) , we see that it has an

unbounded run of the form (q0, ε)
!a−→ (q1, a)

?a−→ (q1, ε)
!b−→ (q2, b)

?b−→ (q3, ε)
!b−→ .... This run in

the AT will be as follows n0(s0 = (q0, ε)) −→ n1(s1 = (q1, a)) −→ n2(s2 = (q1, ε)) and since s2 ≤ s1,
the node n2 is subsumed by n1 and marked dead. Hence, the automata has no branch in the AT
such that there exists nodes labelled by s1, s2 where s1

∗−→ s2 and s1 ≤ s2 but it is unbounded.

q0 q1 q2 q3
!a ?b!b

?a !b

Figure 1: A FIFO machine with an unbounded run. S1

.

4 Bounded FIFO machines

Given three words x, y, z ∈ Σ∗ such that z = x.y, we say that x (resp. y) is a left (resp right)
factor of z. We denote by LF (z) and RF (z) the sets of left and right factors of z. We say that a
language L ⊆ Σ∗ is bounded if there exist w1, ..., wn ∈ Σ∗ such that L ⊆ w∗1 ...w

∗
n. Furthermore,

a language L ⊆ Σ∗ is letter-bounded if there exist v1, ..., vn ∈ Σ such that L ⊆ v∗1 ...v∗n, and more
specifically, different-letter-bounded if for all i, j ∈ {1, ..., n}, i 6= j =⇒ vi 6= vj .

Remark. The set of prefixes of a bounded language is still a bounded language and that a finite
union of bounded languages is still a bounded language: if L ⊆

⋃
i∈I Bi where all Bi are bounded

languages then L ⊆ B where B = Πi∈IBi is still a bounded language.

We first define a labelled transition system.

Definition 4.1 (Labeled transition system). A labeled transition system is a triple TS =
(Q,A,→) where

• Q is the nonempty, countable set of states,

• A is the countable set of labels (or actions),

• → ⊆ Q×A×Q is the transition relation.

7



Given a transition (q, a, q′) ∈ →, q is called the source, q′ the target and a the label of the
transition. We assume that for any a ∈ A there exists a transition (q, a, q′) ∈ −→. A rooted labeled
transition system is a pair (TS, q0) where TS = (Q,A,−→) is an LTS and q0 ∈ Q is the initial
state (or root). Sometimes we write TS = (Q,A,−→, q0) for a rooted LTS.

We now describe a FIFO machines, which are the models that we consider in this section.

Definition 4.2. A FIFO machine S with one channel c over the alphabet Σ is an LTS defined
as S = (Q,Σ, T ), where Q is a finite set of control states, and T ⊆ Q × {!, ?} × Σ × Q is the
transition relation. We denote by A(S) the finite automaton associated with the FIFO machine
S.

q0 q3

q2q1

?c
?b

?a

!c

!a

!b

Figure 2: The FIFO machine S1

.

A configuration s is defined as the tuple s = (q, w), where q is the control state of the machine,
and w is the content of the queue at that point. Further, given a transition t = (q,#a, q′), we

understand it as (q, w)
#a−−→ (q′, w′), such that if #a =?a, for some letter a, w = a.w′, and if

#a =!a, w.a = w′. In other words, ?a represents the action of reading a letter a from the channel,
and !a represents writing the letter a to the end of the channel.

If we consider σ = t1t2...tn to be a sequence of transitions from s = (q, w) to s′ = (q′, w′), we

have that s
σ−→ s′ implies ∃s1, s2, ..., sn such that q

a1−→ q1
a2−→ q2

a3−→ ...
an−−→ qn = q′, such that

(q, a1, q1), (q1, a2, q2)... ∈ T . If we consider yσ =
∏
ai, such that ai =!a, for some a ∈ Σ, and

xσ =
∏
aj where aj =?a, for some a ∈ Σ, we have w.yσ = xσ.w

′.
xσ, short x is the word consumed by σ, and yσ or y the word inserted by σ.
The input language LI(S, s0) = {w ∈ Σ∗|w = proj(σ) and s0

σ−→ s} of a FIFO machine (with
a single channel c) is defined as the set of message sequences that fill up the channel. It is a
language closed by left factors: LF (LI(S)) = LI(S). The reachability language LR(S, s0) is de-
fined as the set {w|(q, w) is reachable from s0 for some q ∈ Q}. In other words, the reachability
language of the machine is defined as the set of all the words that are contained in the channel.

Definition 4.3. A FIFO machine S = (Q,Σ, T ) is input-bounded in an initial state s0 if its
input language LI(S, s0) is bounded. S is reachability-bounded at s0 if the language Post∗S(s0)
is bounded. We say that S is flat if in A(S), every state is in at most one unique elementary
loop.

Remark. Input-bounded FIFO machines, and in fact one-letter FIFO machines, may simulate
VASS. If the FIFO machine is input-bounded, it is also reachability-bounded, but the converse
is not true, ref. to Example 2: the input language (ab∗c)∗ is not bounded while the reachability
language of the fifo is included in the right factors of the language ab∗c. So we deduce that:
VASS ( input-bounded FIFO machine ( reachability-bounded FIFO machine.

8



Remark. Flat FIFO systems are input-bounded but the converse is false: consider an unique
control-state with two loops labeled by !a and !(aa). This system is not flat but its input-laguage
is included in the bounded language a∗ so this system is input-bounded.

Proposition 4.1. The reachability set of a reachability-bounded FIFO machine is a bounded
language.

Proof. Consider a reachability-bounded FIFO machine S, and an initial configuration s0 such
that the reachability language LR(S, s0) is w∗1 ...w

∗
n. Let w0 be the contents of the channel at s0.

Then, we see that the reachability set of the FIFO machine is as follows:

Post∗S(s0) ⊆
n⋃
k=1

[
LF
(
RF (w0.wk

)
∪

n⋃
l=k

(
RF (w0.wk.

l∏
h=k

w∗h.LF (wl)

)]
.

Hence, it is a bounded language.

4.1 Reachability-bounded FIFO machines simulate Minsky machines

While input-bounded FIFO systems have decidable boundedness and termination, for reachability-
bounded systems, these problems are undecidable. This can be shown by representing a two-
counter Minsky machine using a reachability-bounded system.

Proposition 4.2. Two counter Minsky machines are simulated by reachability-bounded FIFO
machines.

Proof. Consider a Minsky machine M = ({q0, ..., qn}, {x1, x2}, {δ0, ..., δn−1}), where qi are the
states, xa and xb are the counters, and δi are transition rules. The transition rules can be of two
types -

δi : xj := xj + 1; goto qk;
δi : if xj > 0 then (xj := xj − 1; goto qk) else goto ql;
We can construct an equivalent reachability bounded machine as follows. Q = {q1, ..., qn}]Q′,

where Q′ is a set of intermediate states. Σ = {a, b,#, $,&}, where #, $,& are used as markers
during the test for zero. We consider the bounded language to be $∗a∗#∗b∗&∗$∗a∗#∗b∗&∗, and
we start with queue contents as $#&. The intuition is to rotate the tape contents in such a way
that the contents are always a bounded language, when incrementing or decrementing either
counter. For every transition of the form δi : xj := xj + 1; goto qk;, we create the following
transition sequence that maintains the boundedness of the queue contents while incrementing the
occurences of a and b depending on the original transition. (We assume that we can concatenate
transitions to form single transitions, but this can be unraveled to ensure that every transition
is only a single read or a single write.)

qi q′i,1

q′i,2

q′i,3 q′i,4 q′i,5

q′i,6

qk
?$.!$

?a !a

?# !a !#

?b !b

?&.!&

Figure 3: Incrementing xa
.

9



Likewise, a transition of the form δi : if xj > 0 then (xj := xj−1; goto qk) else goto ql;
can be constructed as follows.

qi

q′′i,1 q′′i,2 ql

q′i,1

q′i,2

q′i,3 q′i,4 q′i,5

q′i,6

qk

?#.!#

?a

?a !a

?# !a !#

?b !b

?&.!&

?b!b ?&.!&

Figure 4: Decrementing xa
.

Similar constructions can be made for all transitions, and the queue contents are always of
the form $∗a∗#∗b∗&∗$∗a∗#∗b∗&∗, hence, the system is reachability-bounded.

4.2 Prefix ordering over bounded automata

The (extended) prefix ordering on the configurations of a FIFO machine is defined as follows:
s = (q, w) ≤pref s′ = (q′, w′) =⇒ q = q′ and w � w′. The extended prefix-ordering is reflexive,
antisymmetric, and transitive, hence, it is an ordering.

Proposition 4.3. Input-bounded FIFO machines are branch-wqo for the prefix-ordering ≤pref .

Proof. Let us consider a FIFO system S and an infinite run r = s1s2...si... with si = (qi, wi).
Since S is input-bounded, the reachability set Post∗S(s0) is also a bounded language (Proposition
4.1) included in v∗1v

∗
2 ...v

∗
k where all vi ∈ Σ∗.

The infinite run is of the form s0
σ1−→ s1

σ2−→ s2...si−1
σi−→ si and we denote σ = σ1σ2...σi...

and σ[i] = σ1|!σ2|!...σi|!. It can be observed that σ[i] is a prefix of σ[i+1] for all i ∈ N. Since σ[i]
is of the form v

n1,i

1 ...v
nm,i
m LF (vm) for some n1,i..., nm,i ≥ 0 and 1 ≤ m ≤ k, the infinite sequence

(σ[i])i∈N satisfies two possible exclusive cases:
case (1) : There exists an i0 such that ∀i ≥ i0, σi|! = ε so there exists i1 ≥ i0 such that for

all i ≥ i1, wi = wi+1. Hence because there are finitely many control states, we deduce that there

exist i2, i3 ≥ i1 st si2
+−→ si3 and si2 = si3 hence also in particular si2 ≤pref si3 .

case (2) : There are infinitely many indices i such that σi|! 6= ε, which means that the infinite
sequence (σ[i])i∈N is not stationary. This implies that the set Sσ = {(n1,i, ..., nk,i) | i ∈ N},
associated with σ, is infinite. Hence, there exists a least index p such that the set {np,i}i∈N is
infinite. Then the set F = {(n1,i, ..., np−1,i) | i ∈ N} is finite.

We claim that for all indices ` ≥ p+ 1, n`,i = 0 for all i. Let us assume to the contrary that
there is some index ` ≥ p+ 1 and i0 such that n`,i0 6= 0. This means that the word v` is in the
channel in configuration si0 , which means that the word v` was sent to the channel before (or
at) the step i0, i.e, σ[i0] = v

n1,i0
1 ...v

np,i0
p ...v

nm,i0
m LF (vm) and nl,i0 > 0 and 1 ≤ m ≤ k. So, in

10



particular, word vp cannot be sent after i0, hence, np,i = np,i0 ∀i > i0. Hence, {np,i}i∈N is finite
which is a contradiction to our assumption that {np,i}i∈N is infinite.

This means that after some configuration st, we only write word vp to the channel. Since, the
set F = {(n1,j , ..., np−1,j) | j ∈ N} is finite, we can extract an infinite subsequence (q, wi)i∈K⊆N
where wi = uv

np,i
p with u ∈ F and (np,i)i∈K is non-decreasing. Hence, there exist two in-

dices a, b > 0 such that wa = u.v
np,a
p and wa+b = u.v

np,a+b
p and np,a ≤ np,a+b hence wa+b =

wa.v
np,a+b−np,a
p hence wa ≤pref wa+b. So we have found two configurations sa, sa+b such that

sa ≤pref sa+b. Hence, the system is branch-wqo for the prefix ordering.

q0 q1 q3

q2

!a!a

?a

?a
!b

?b

Figure 5: The FIFO machine S1

.

Remark. System S1 in fig 5 shows that input-bounded FIFO machine under the prefix-ordering

are not branch-compatible. We have (q1, ε) ≤pref (q1, a) and (q1, ε)
!b?b!a−−−→ (q1, a). However,

(q1, ε)
!b−→ (q2, b) and (q1, a)

!b−→ (q2, ab), but b �pref ab. Therefore, the system is not branch-
compatible under the prefix ordering.

Proposition 4.4. Input-bounded FIFO machines are not branch-compatible for the prefix-ordering.

4.3 Prefix-compatible relation over bounded machines

We first define a new relation which is a restriction of the prefix ordering, and then see that
bounded FIFO machines are branch WSTS over this relation.

For any sequence σ of transitions in a FIFO machine, we denote by xσ the concatenation of
all the letters received from the channel in σ, and yσ is the concatenation of all the letters sent
to the channel in σ.

Definition 4.4. For two configurations (q, w), (q′, w′) of a FIFO machine, we say that (q, w) ≤comp
(q′, w′) if (q, w)

σ−→ (q′, w′) and (xσ = ε and q = q′) or the three following conditions hold:

• (q, w) ≤pref (q′, w′) and

• |xσ| ≤ |yσ| and

• xωσ = w.yωσ .

Intuitively, this relation implies that σ is infinitely iterable from the configuration (q, w), as
shown as part of Lemma 3.8 in [11]. The following lemma from [11] and [9] is used in order to
prove it.

11



Proposition 4.5. Consider three finite words x, y ∈ Σ+ and w ∈ Σ∗. The equation xωσ = w.yωσ
holds iff there exists a primitive word z 6= ε and two words x′, x′′ such that x = x′x′′, x′′x′ = z∗,
w = x∗x′ and y = z∗.

We assume that x 6= ε. That implies xωσ = w.yωσ . We infer from the previous proposition that
there is a primitive word z 6= ε and two words x′, x′′ such that x = x′x′′, x′′x′ = z∗, w = x∗x′

and y = z∗ Suppose x′′x′ = zj and y = zk. Since |y| ≥ |x| = |x′′x′|, we have k ≥ j.

Proposition 4.6 ([11]). For all n ≥ 0, σ is fireable from any channel content wzn and the

resulting channel contains wzn+(k−j). This implies that for all m ≥ 1, (q, w)
σm

−−→ (q, wzm×(k−j)),
hence, σ is infinitely iterable.

Proposition 4.7. FIFO machines are branch-compatible for the relation ≤comp.

Proof. In other words, we consider a FIFO machine with configurations s, t, s′ such that s ≤comp
s′ with s

a1−→ t
a2...an−−−−→ s′ and let us write σ = a1a2...an. Then we need to show that there exists

a configuration t′ such that s′
a1−→ t′ and t ≤comp t′ where σ′ = a2...ana1.

There are two cases, either that a1 is a send transition, or it is a receive transition. For both
cases, we know that s ≤comp s′, hence q(s) = q(s′). Therefore, the transition a1 is enabled at

s′, and further, there exists a configuration t′ such that s′
a1−→ t′ such that q(t) = q(t′). Now we

have to show that t ≤comp t′.

• (Case 1 : receive) Let us assume a1 =?a for some a ∈ Σ. Since, a1 is a receive transition,
w(s) = a.w(t). Further, yσ = yσ′ , since all the write transitions are the same for σ and σ′.
Also, a.xσ′ = xσ.a. Hence, xσ = a.p and xσ′ = p.a for some w.

Since s ≤comp s′,
w(s).yωσ = xωσ

=⇒ a.w(t).yωσ′ = (a.p)ω

=⇒ a.w(t).yωσ′ = a.(p.a)ω

=⇒ w(t).yωσ′ = xωσ′

Hence, t ≤comp t′.

• (Case 2 : send) Let us assume a1 =!a for some a ∈ Σ.

Since, a1 is a send operation, w(s).a = w(t). Further, xσ = xσ′ , since all the letters received
are the same for σ and σ′. Also, a.yσ′ = yσ.a. Hence, yσ = a.p and yσ′ = p.a for some w.
Since s ≤comp s′,

w(s).yωσ = xωσ

=⇒ w(s).(a.p)ω = xωσ′

=⇒ w(s).a.(p.a)ω = xωσ′

=⇒ w(t).yωσ′ = xωσ′

Hence, t ≤comp t′.

Therefore, FIFO machines are branch-compatible for the relation ≤comp

Remark. FIFO machines under the relation ≤comp are also strictly branch-compatible. Let us

consider two configurations s, s′ such that s <comp s
′ for the word σ = a1a2...an. Then if s

a1−→ t

and a1 is a read operation, then the resulting t′ such that s′
a1−→ t′ gives us the relation t <comp t

′,

12



since the w(s) 6= w(s′) =⇒ a.w(t) 6= a.w(t′) =⇒ w(t) 6= w(t′). Now, if a1 is a write action,
then w(s) 6= w(s′) =⇒ w(s).a 6= w(s′).a =⇒ w(t) 6= w(t′). Hence, FIFO machines are strictly
branch-compatible under this relation.

However, since the relation ≤comp is not an ordering, we cannot use the theory of branch-wqo
to it. But in [13], the following result was proved.

Proposition 4.8. [13]The FRT is finite for the relation ≤comp for input-bounded FIFO systems.

Using the result in Proposition 3.3 and the above proposition along with the fact that the
relation ≤comp is branch-compatible for FIFO machines, we have the proposition.

Corollary 4.0.1. Termination is decidable for input-bounded FIFO machines.

Decidability of boundedness of input-bounded FIFO machines was proved earlier in [13].
Hence, combining the two propositions, we have the following result.

Theorem 4.1. Boundedness and termination are decidable for input-bounded FIFO machines.

5 Reachability of input-bounded FIFO machines

We now look at the below two verification properties for transition systems.

Problem (Reachability). Given a system S and two configurations (q0, w0) and (q, w), is there
a run starting from (q0, w0) which reaches (q, w)?

Problem (Control-state reachability). Given a FIFO system S, a configuration (q0, w0) and a
control-state q, is there a channel valuation w such that (q, w) is reachable from (q0, w0)

In [11], it was shown that reachability reduces to control-state reachability for flat systems.
However, in case of flat systems, the converse is not true. However, using the same reductions
as in [11], we have the following result for input-bounded FIFO machines.

Proposition 5.1. Reachability is recursively equivalent to control-state reachability for input-
bounded FIFO systems.

Proof. Let us consider a FIFO machine S, a control-state q, and a configuration (q, w). We
first reduce reachability to control state reachability. Another system BS,(q,w) is constructed as
follows. A path is added from the control state q as follows, where $ is a new symbol not in Σ.

q qend
!$ ?w$

The configuration (q, w) is reachable in S iff the control state qend is reachable in BS,(q,w).
Furthermore, BS,(q,w) is input-bounded if the initial system is input-bounded, since we only ap-
pend a finite word to the existing system, and concatenation of a bounded-language with a finite
string results in a bounded language. Therefore, reachability reduces to control-state reachability
for input-bounded FIFO systems.

Conversely, in order to show that control-state reachability is reducible to reachability, we
construct BS,q as follows. To S, we add |Σ| self-loops from and to the control state q, each labeled
by a unique letter in the alphabet Σ. q is reachable in S iff there exists a w such that (q, w) is
reachable in S iff (q, ε) is reachable in BS,q. We see that adding self-loops with read transitions
does not change the input-language of the system, and hence, if S is input-bounded, so is BS,q.
Hence, control state reachability reduces to reachability for input-bounded FIFO systems.

13



Remark. Even though we can extend the established results to show that reachability and
control-state reachability are reducible to one another, we don’t see how to extend the reachability
result shown in [7]. This is because the proof uses a d-tape pushdown automata in order to show
that reachability is in NP . However, the trace of the input-bounded FIFO machines need not be
a bounded language. Hence, it is still an open problem to know the complexity of the reachability
of input-bounded FIFO systems.

5.1 Reachability of input-letter bounded FIFO systems

In [5], it was shown that reachability is decidable in input-different-letter bounded FIFO sys-
tems. The proof idea involved simulating such systems using Petri nets with a structured set of
terminal markings. We show that reachability in input-letter bounded is also decidable.

(Intuition) In order to show reachability is decidable for input-letter-bounded FIFO systems,
we first construct a counter machine. Let us assume that S = (Q,Σ, T ) is a FIFO system over
a channel c, and the input language of the system is v∗1 ...v

∗
k. We construct the corresponding

counter machine S′ = (Q′,K,∆).
We consider three automata, which share counters and synchronize them. The counters

shared between the automata are as follows: there is one counter cα and another counter c′α, for
each α ∈ Σ. The counter cα is incremented when there is a send operation, and the counter c′α
is decremented when there is a receive operation. Furthermore, we have k additional counters
for each of the letters v1, ..., vk in the input language.

The first automaton has the same set of states as the original FIFO machine, and transitions
mimicking the one in the original machine. However, instead of sending and receiving from the
channel, the transition modifies the counter corresponding to the letter being sent/received.

The second automaton is to ensure that the input language of the machine is letter bounded.
Since we know the input-language of the machine, we can ensure that the input language of the
counter automaton is the same as the FIFO machine. It has states {sendi} for all i from 1 to k,
and each state increments the counter corresponding to vi and ensures that no preceding letter
vj can be sent to the channel if we are already receiving vi where i > j.

The third automaton ensures that reception happens in the same order as the send, and that
any letter can be read only after it is sent, and all previously sent letters must have already been
received. It has states {reci} for all i from 1 to k. But since we can’t receive letters which have
not been sent, the product ensures that the counter machine cannot be in a state (q, sendi, recj)
such that i < j.

q0

q1

!a

ε

?a !b

Figure 6: A FIFO machine S with input-language a∗b∗.

14



q0

q1

send1

send2

rec1

rec2

Constraints:
∑
α∈Σ c

′
α ≤ 1 and

∑
α∈Σ cα ≤ 1

ca++

ε

c′a-- cb++

ca--
c1++

ε

cb--
c2++

c1--
c′a++

c1 = 0?

c2--
c′b++

Figure 7: Counter automata corresponding to the FIFO machine S.

Q′ = Q× {sendi, recj |i ∈ {1, ..., k} and j ∈ {1, ..., i}}.

K = {cα, c′α|α ∈ Σ}
⋃
{ci|i ∈ {1, ..., k}}.

The counters are as follows : ca is incremented when a is sent to the channel, c′a is decremented
when a is received from the channel, and ci keeps track of the number of occurences of letter vi.
We also have the following constraints- ∑

α∈Σ

c′α ≤ 1

∑
α∈Σ

cα ≤ 1

These constraints ensure that only one of the counters in the sets cα and c′α can be non-zero, we
cannot store multiple occurences of letters in them, and instead, we store them in the counters
c1, ..., ck.

∆ = ∆S

⋃
∆read

⋃
∆write, where ∆S mimics the FIFO system, i.e.

if q
!a−→ q′ ∈ T then (q, sendi, reci)

ca++−−−→ (q′, sendi, recj) ∈ ∆S

if q
?a−→ q′ ∈ T then (q, sendi, recj)

c′a−−−−−−→ (q′, sendi, recj) ∈ ∆S

For every letter in the alphabet Σ and the input language, if vi = a, we add the following
transitions to ensure that we read the letters. We count the occurences of the send operations for
each letter vi and increment the counter ci. Furthermore, since we know that the input language
is bounded, when we increment a counter ci, we cannot ever send a letter vj such that j < i
again, hence, all the counters cj will never be incremented again.

(q, sendi, recj)
ca−−;ci++−−−−−−−→ (q, sendi, recj) ∈ ∆write and

(q, sendi, recj)
ε−−−−−−→ (q, sendi+1, recj) ∈ ∆write for all 1 ≤ j ≤ i < k.

And for the receive transitions, we just need to make sure we receive the letters in the same
order that they were sent (FIFO behaviour). Hence, unless all the occurences of vj are received
and the counter is tested to zero before we can start receiving vj+1.

15



(q, sendi, recj)
c′a++;cj−−−−−−−−−→ (q, sendi, recj) ∈ ∆read and

(q, sendi, recj)
cj=0?−−−−→ (q, sendi, recj+1) ∈ ∆read for all 1 ≤ j ≤ i < k.

The product looks as follows (sendi and reci have been abbreviated to si and ri respectively).

q0, s1, r1

q1, s1, r1

q0, s2, r1

q1, s2, r1

q0, s2, r2

q1, s2, r2

ε

ε

ε

ε ε

c1 = 0?

c1 = 0?

ca++

cb++

ca++

cb++

ca++

cb++

c′a++
c1--

c′a++
c1--

c′a++
c1--

c′a++
c1--

c′b++
c2--

c′b++
c2--

c1++
ca--

c1++
ca--

c2++
cb--

c2++
cb--

c2++
cb--

c2++
cb--

c′a-- c′a-- c′a--

Figure 8: Synchronized product of counters simulating S

Proposition 5.2. If (q0, ε)
σ−→ (q, w) then there exists (q, sendi, recj) reachable in S′ such that

the following conditions hold

•
∑
α∈Σ cα = 0

•
∑
α∈Σ c

′
α = 0

• i ≥ j

•
∑j−1
p=1 cp = 0

•
∑k
p=i+1 cp = 0.

Furthermore, σ|! = vn1
1 ...vni

i where ni > 0 if i > 1 and w = v
mj

j ...vmi
i and c` = m` for all

j ≤ ` ≤ i.

Proof. Let us prove this by induction. The initial state q0 is reachable in S and since (q0, send1, rec1)
is the initial state in S′ and all counters are set to zero, this holds true trivially.

Let us assume we can reach a state q in S such that (q0, ε)
σ−→ (q, w), and equivalently we can

reach (q, sendi, recj) such that the conditions are met. Now, we need to prove that any state
reachable from q can be also reached in S′.

Let us assume we have a send operation such that (q, w)
!a−→ (q1, w.a). Since we know

that the input language is bounded, this corresponds to the fact that we are sending a letter

16



vp where p ≥ i. Since the letter counters are all set to zero, we can execute the transition

(q, sendi, recj)
ca++−−−→ (q1, sendi, recj). Furthermore, since p ≥ i, we can perform a sequence

of empty transitions from ∆write such that (q, sendi, recj)
ε−→ (q, sendp, recj and then one final

transition (q, sendp, recj)
ca−−;cp++−−−−−−−−→ (q, sendp, recj). This new configuration satisfies all our

properties.
Let us assume that instead there is a receive operation. Since there is a read operation,

it implies that at some point there was a sending to channel with the same letter, and all
other letters before it have been consumed. Since the queue contents are of the form w =
v
mj

j ...vmi
i , we have that the next letter to be received is vj or if there is no vj in the channel,

some letter vp such that p > j. If the current letter to be read is vj , we can execute the

following transitions on S′. (q, sendi, recj)
c′a++;cj−−−−−−−−−→ (q, sendi, recj and then the transition

(q, sendi, recj)
c′a−−−−−−→ (q′, sendi, recj). Otherwise, if there is no vj in the channel, and the next

occurence is some vp and all counters c` = 0 where j ≤ ` ≤ p. Hence, we can execute the

transitions (q, sendi, recj)
c`=0?−−−−→ (q, sendi, recp, and then since Cp is non-zero, we can execute

(q, sendi, recp)
c′a++;cp−−−−−−−−−−→ (q, sendi, recp followed by (q, sendi, recp)

c′a−−−−−−→ (q′, sendi, recp).

Proposition 5.3. Conversely, if a configuration (q, sendi, recj) is reachable in S′ from the initial
configuration, such that it satisfies the conditions in the previous proposition, i.e.

•
∑
α∈Σ cα = 0

•
∑
α∈Σ c

′
α = 0

• i ≥ j

•
∑j−1
p=1 cp = 0

•
∑k
p=i+1 cp = 0

then the control state q is reachable in S. Furthermore, the contents of the queue at q is w =
v
mj

j ...vmi
i where m` = c` 6= 0 (the current counter values) for all j ≤ ` ≤ i.

Proof. We prove this by induction. The initial configuration in S′ is (q0, send1, rec1), with all
counters at 0. Since (q0, ε) is the initial configuration in S, the proposition is trivially true.

Now, let us assume we can reach a configuration (q, sendi, recj) in S′ such that the conditions
are met, and the control state q is reachable in S. We now show that if the control state q1 is
reachable in S′, it is also reachable in S.

At the current configuration (q, sendi, recj), we have the following options:

• Case 1 : (q, sendi, recj)
ε−→ (q, sendp, recj) where p > i. In this case, since the control state

does not change, and neither do the counter values, the result holds.

• Case 2: (q, sendi, recj)
ε−→ (q1, sendi, recj). This implies that there is an epsilon transition

from q to q1 in S, and hence, the result still holds.

• Case 3: (q, sendi, recj)
ca++−−−→ (q1, sendi, recj). But since the counter values do not satisfy

the conditions (i.e. we are in an intermediate configuration), we then have (q, sendi, recj)
ε−→

(q1, sendp, recj)
ca−−,cp++−−−−−−−−→, where p ≥ i. Hence, the word v

mj

j ...vmi
i vp is input-bounded,

and furthermore, the transition from q to q1 marked with !a can be executed in order to
obtain the word v

mj

j ...vmi
i vp. Hence, the result holds.

17



• Case 4: (q, sendi, recj)
cj−−;c′a++−−−−−−−→ (q, sendi, recj). However, this is an intermediate con-

figuration, hence, we then execute (q, sendi, recj)
c′a−−−−−−→ (q1, sendi, recj). Since the current

content of the channel is v
mj

j ...vmi
i , it can be seen that vj can be received from the queue

in S, and the transition labeled with ?a from q to q1 is feasible. Furthermore, if mj then

becomes zero, the transition (q1, sendi, recj)
cj=0?−−−−→ (q1, sendi, recj+1) is executed.

Hence, for each of the possible valid transition sequences in S′, we see that the corresponding
control states are reachable in S. Hence, the result holds true.

The above two propositions give us the following result.

Theorem 5.1. Reachability is decidable for input-letter-bounded FIFO systems.

6 Conclusion

We were able to show that termination and boundedness are decidable for input-bounded FIFO
systems. Furthermore, we also showed that reachability is decidable for input-letter-bounded
FIFO systems. We conjecture that it is also decidable for input-bounded FIFO systems, by
modifying the counter systems to accept words instead of single letters. However, this is still
an open question. While we have shown that termination, boundedness (and reachability for
input-letter bounded systems) are decidable, the complexity of such problems is still an open
question.

The approach of understanding FIFO systems using over and under-approximations is a
interesting way forward. We have seen that there are subclasses which have decidable properties,
and verification of general FIFO systems may be possible by using these approximations in a
semi-decidable algorithm, if their complexity is efficient. Such methods could be implemented
to partially analyse the system.

It would also be interesting to explore the notions of branch WSTS that we have defined in
this report. And finally, it is not yet known whether the problem of coverability is decidable for
input-bounded FIFO systems.

18



References

[1] Parosh Aziz Abdulla et al. “Using forward reachability analysis for verification of lossy
channel systems”. In: Formal Methods in System Design 25.1 (2004), pp. 39–65.

[2] Michael Blondin, Alain Finkel, and Pierre McKenzie. “Well Behaved Transition Systems”.
In: Logical Methods in Computer Science 13 (2016).

[3] Daniel Brand and Pitro Zafiropulo. “On communicating finite-state machines”. In: Journal
of the ACM (JACM) 30.2 (1983), pp. 323–342.

[4] Gérard Cécé and Alain Finkel. “Verification of programs with half-duplex communication”.
In: Information and Computation 202.2 (2005), pp. 166–190.

[5] A Choquet and A Finkel. “Simulation of linear FIFO nets having a structured set of
terminal markings”. In: Proc. 8th European Workshop on Applications and Theory of Petri
Nets. 1987.

[6] P. Erdős and R. Rado. “A partition calculus in set theory”. In: Bull. Amer. Math. Soc. 5
(Sept. 1956), pp. 427–489.

[7] Javier Esparza, Pierre Ganty, and Rupak Majumdar. “A Perfect Model for Bounded Verifi-
cation”. In: Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Com-
puter Science. LICS ’12. New Orleans, Louisiana: IEEE Computer Society, 2012, pp. 285–
294.

[8] A. Finkel and Ph. Schnoebelen. “Well-structured transition systems everywhere!” In: The-
oretical Computer Science 256.1 (2001), pp. 63–92.

[9] Alain Finkel, S. Purushothaman Iyer, and Grégoire Sutre. “Well-abstracted transition sys-
tems: application to FIFO automata”. In: Information and Computation 181.1 (2003),
pp. 1–31.

[10] Alain Finkel and Etienne Lozes. “Synchronizability of communicating finite state machines
is not decidable”. In: ICALP (2017).

[11] Alain Finkel and M. Praveen. “Verification of Flat FIFO Systems”. In: Proceedings of
the 30th International Conference on Concurrency Theory (CONCUR’19). Ed. by Wan
Fokkink and Rob van Glabbeek. Leibniz International Proceedings in Informatics. To ap-
pear. Amsterdam, The Netherlands: Leibniz-Zentrum für Informatik, Aug. 2019.

[12] Blaise Genest, Dietrich Kuske, and Anca Muscholl. “On communicating automata with
bounded channels”. In: Fundamenta Informaticae 80.1-3 (2007), pp. 147–167.

[13] Thierry Jéron and Claude Jard. “Testing for Unboundedness of FIFO Channels.” In: Theor.
Comput. Sci. 113 (May 1993), pp. 93–117.

[14] Peizun Liu, Thomas Wahl, and Akash LaL. “Verifying Asynchronous Event-Driven Pro-
grams Using Partial Abstract Transformers (Extended Manuscript)”. In: arXiv preprint
arXiv:1905.09996 (2019).

19


	Introduction
	Preliminaries
	Branch WSTS
	Bounded FIFO machines
	Reachability-bounded FIFO machines simulate Minsky machines
	Prefix ordering over bounded automata
	Prefix-compatible relation over bounded machines

	Reachability of input-bounded FIFO machines
	Reachability of input-letter bounded FIFO systems

	Conclusion

