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General context

Population protocols are a model for distributed systems, consisting of a finite number of
tiny agents. These tiny agents are indistinguishable and one can imagine them as floating
around in an arbitrary fashion, with interactions occurring when two (or more) agents
meet. While individual agents possess only very limited memory and computational
capacity, the system as a whole is capable of performing complex distributed tasks such
as leader election and majority voting. The problem of verifying the correctness of such
protocols has been extensively studied, and it was found that it is at least as hard as
the Petri net reachability problem.

The research problem

We address the problem of automatic verification of the correctness of such protocols.
While there has been some work in the field, the question of verifying population proto-
cols for all possible inputs is still largely unanswered. There has been some effort in using
traditional model checkers to answer this question, however, it only works for protocols
with fixed sizes, or a subset of all initial inputs [20, 11, 10]. Recently, it has been shown
that strongly silent protocols can be automatically and efficiently verified with the help
of constraint-solvers [9], and the logic has been implemented in the tool Peregrine [8].
However, the most succinct protocols known for some tasks are not strongly silent (we
give an example in this thesis).

The purpose of my internship was to use existing ideas in the field of Petri nets in
order to extend the subclass of population protocols which can be automatically verified.
In doing so, it is possible to answer the verification question for a larger subclass of
protocols, and verify protocols which were previously not verifiable.

Proposed contribution

Using ideas of loop acceleration, it was possible to prove the correctness of the succinct
non-silent flock-of-birds protocol, described in [7]. Furthermore, we could automatically
verify its correctness, which was previously not possible. I was also able to verify a large
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number of protocol families, until a threshold, and successfully give counter-examples
for the protocols that were not correct. Using ideas from the theory of well-structured
transition systems, we could extend it to the verification problem of population protocols,
and conjecture the correctness for a larger subclass.

Arguments supporting its validity

We were able to verify and automatically prove the correctness of a family of protocols,
which was previously not automatically verified. Furthermore, we were able to extend
this result to various other protocol families, and have experimental results that conjec-
ture their correctness as well. While our solution is not as robust as the existing tool for
strongly silent protocols, our method can be used for protocols outside of this subclass.

Another thing to note is that our solution uses existing theoretical results from the
family of transition systems, and extends them to the verification of population protocols.
Our solution makes use of the previously existing tool FASTer, described in [5], which
was designed for a broader class of systems. We were able to develop a less ad-hoc notion
for the automatic verification of population results using theories of flat acceleration and
backwards reachability, instead of the previous notions of layered termination and strong
consensus used in [9].

Summary and future work

In the course of this internship, we were able to develop a more structured notion for
automatically verifying population protocols. While we may not be able to efficiently
verify all protocols at this point, we can see that this characterises a large set of protocols.

The possibility of extending this result to other protocol families is an immediate
follow-up. While we were able to verify the correctness of the non-silent flock-of-birds
protocol [7], we still have not been able to characterises the set of all such protocols
which can be automatically verified using this method. Furthermore, there is scope for
optimising the tool in order to automatically verify protocols of larger sizes.
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1 Introduction

Population protocols are a model of distributed computation by identical, anonymous,
finite-state agents of limited computational power, which work together to achieve a
common task. In every step, a fixed number of agents are chosen nondeterministically
to interact and update their states according to a common transition function.

Since the agents in a population protocol are anonymous, the resulting transition only
depends on their current states, as there are no other identifying features. Furthermore,
they are passively mobile, which means that the agents do not have any influence on
when and with whom they interact. The model can be seen as a number of identical
agents wandering around the space blindly. Structurally, population protocols can be
seen as a special class of Petri nets.

Population protocols provide a simple formalism to model, e.g., networks of passively
mobile sensors [3, 4], trust propagation [12], evolutionary dynamics [17], and chemical
systems, under the name chemical reaction networks [19].

The population protocol model was first introduced by Angluin and others in [3].
Previously, a similar probabilistic model to study trust in a social network was introduced
by Diamadi and Fischer in [12]. Since then, there has been some focus on characterising
predicates computable by population protocols. In [2], it was shown that the computable
predicates are exactly the semilinear predicates. These are equivalent to the predicates
that can be defined in Presburger arithmetic: the first-order theory of natural numbers
with addition and order.

Since the agents executing a protocol are anonymous and identical, the global state
—called a configuration —of the protocol is completely determined by the number of
agents in each state. A population protocol is said to compute a predicate on the initial
state, if in all fair executions, all agents eventually converge to the correct value of the
predicate. An execution is fair if it is finite and cannot be extended, or it is infinite and
every configuration of agent states that is reachable infinitely often is reached infinitely
many times along that execution.

A protocol is well-specified if, on every input, every fair execution eventually con-
verges to configurations where all agents agree on a consensus value that depends only
on the input. A lot of work on population protocols has focused on characterising what
predicates on the input values can be computed by well-specified protocols.

A protocol is said to be correct if it behaves correctly on all the possible executions of
all possible initial configurations of the protocol. Furthermore, a population protocol is
parameterised, which means the initial number of agents can be unbounded even though
the number of agents stay unchanged during the execution of the protocol. Hence, it
is challenging to design correct and efficient protocols, and also verify that they are,
indeed, correct.

In previous work, some authors have studied the automatic verification of population
protocols[20, 11]. Since a protocol has a finite state space for each initial configuration,
model checking algorithms can be used to verify that the protocol behaves correctly for
a finite number of initial configurations. However, this technique cannot prove that the
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protocol is correct for every configuration. It was shown that the problem of deciding
whether a protocol computes some predicate, and the problem of deciding whether it
computes a given predicate, are both decidable and at least as hard as the reachability
problem for Petri nets [14]. More precisely, the problem is known to be EXPSPACE-
hard, and all known algorithms for it have non-primitive recursive complexity [18].

In [8], the authors introduce Peregrine, the first tool for the parameterised analy-
sis of population protocols. Peregrine can formally verify the correctness of protocols
automatically over all of the infinitely many initial configurations using the recent ap-
proach of [9] for solving the so-called well-specification problem. However, Peregrine
cannot verify correctness of all protocols, but only of silent protocols, a large subclass of
protocols.

From results in [7], it was seen that there are efficient protocols outside of this subclass
in the literature which are still yet to be verified. We look at alternative techniques to
verify such protocols.

Our main result is the automatic verification of the flock-of-birds family of protocols,
described in [9], which does not belong to the class of strongly silent protocols that can
be automatically verified by Peregrine. The proof of correctness uses results from the
theory of Petri nets. We use the theory of accelerations [16] to automatically verify the
family of protocols. We rely on the semi-decision procedure described in [1] to compute
the upward closure of the sets of configurations.

This report is organised as follows. Section 2 introduces some preliminaries, and
the scheme of population protocols. Section 3 goes on to describe the problem we
are interested in solving, clearly differentiating silent and non-silent protocols. It also
gives the reader some idea about some families of protocols for which the verification of
correctness can be automatically verified, and some examples where it is still unanswered.
Section 4 talks about the initial approach we adopted using ideas of upward closure of
unstable configurations and the incompleteness of the approach. Section 5 talks about the
concept of flatness and acceleration. It formulates our automatic approach to extend the
families of protocols for which we can automatically verify correctness. Finally, section
6 gives some experimental results and the relevance of our solution.

2 Preliminaries

2.1 Basic notions

Let n ∈ N>0. The logarithm in base b of n is denoted by logb n. When we write log n,
it is implicit that the base b = 2. We define bits(n) as the set of indices of the bits
occurring in the binary representation of n, e.g. bits(9) = {0, 3} since 9 = 10012. The
size of n is the number of bits required to represent n in binary, and it is denoted by
size(n). We see that |bits(n)| ≤ size(n) = blog nc+ 1.

A multiset over a finite set E is a mapping M : E → N. Intuitively, it is a set which
allows multiple occurrences of the same element. For every element e ∈ E, M(e) denotes
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the number of occurrences of e in M . For example *1, 1, 4+ is a multiset M such that
M(1) = 2, M(4) = 1 and M(e) = 0 for every e ∈ E\{1, 4}. The size of a multiset

M ∈ NE is |M | def= Σe∈EM(e). The support of M ∈ NE is JMK def
= {e ∈ E : M(e) > 0}.

Comparison is extended to multisets componentwise, i.e. M ≤ M ′
def⇐⇒ M(e) ≤ M ′(e)

for every e ∈ E. Addition is defined as (M +M ′)(e)
def
= M(e) +M ′(e), for every e ∈ E.

We define multiset difference as (M 	M ′)(e) def
= max(M(e)−M(e′), 0), for every e ∈ E.

A finite graph is a pair G = (V,E), where V is a finite set of nodes, and E ⊆ V × V
is a set of edges, such that (u, v) ∈ E means that there is an edge from u to v. Graphs
can also be directed. Therefore it may be the case that (u, v) ∈ E but (v, u) /∈ E. We
say that there is a path from u to v if v = u or there is a sequence of nodes x1, x2, . . . , xn
such that (v, x1) ∈ E, (x1, x2) ∈ E and so on, and (xn, u) ∈ E.

A set C ⊆ V is a strongly connected component (SCC) of G if C is a maximal
set such that for all nodes c, c′ ∈ C, there is a path from c to c′ and a path from
c′ to c. A bottom strongly connected component (BSCC) of G is an SCC of G from
which there are no outgoing edges. More formally, an SCC C is a BSCC if ∀c ∈ C,
∀v ∈ V, (c, v) ∈ E =⇒ v ∈ C. We can also lift the reachability relation to SCCs, i.e.
for two SCCs C and D, we write C → D iff there exists v ∈ C and w ∈ D : (v, w) ∈ E.

2.2 Protocol scheme

A population P over a finite set E is a multiset P ∈ NE such that |P | ≥ 2. The set
of all populations over E is denoted by Pop(E). A k-way population protocol is a tuple
P = (Q,T,Σ, I, O) where :

• Q is a non-empty finite set of states,

• T ⊆
⋃

2≤i≤kQ
i × Qi is a set of transitions such that for every (p, q) ∈ Q2, there

exists at least a pair (p′, q′) ∈ Q2 such that ((p, q), (p′, q′)) ∈ T ,

• Σ is a non-empty finite input alphabet,

• I : Σ→ Q is the input function mapping input symbols to states,

• O : Q→ {0, 1} is the output function mapping states to boolean values.

We call the elements of Pop(Q) configurations. A configuration C describes a collec-
tion of identical finite-state agents with Q as the set of states, containing C(q) agents in
state q for every q ∈ Q, and at least two agents in total.

For a configuration, we define the output function O : Pop(Q)→ {0, 1,⊥} as follows:

O(C)
def
=


1 ⇐⇒ O(p) = 1 ∀p ∈ C,
0 ⇐⇒ O(p) = 0 ∀p ∈ C,
⊥ otherwise.
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Let t = ((p1, p2, . . . , pi), (q1, q2, . . . , qi)) be a transition. Intuitively, t describes that i
agents at states p1, p2, . . . , pi may interact and move to states q1, q2, . . . , qi. The preset
and postset of t are respectively •t

def
= {p1, p2, . . . , pi} and t•

def
= {q1, q2, . . . , qi}. This is

extended to sets of transitions as well, e.g. T •
def
=

⋃
t∈T t

•. And the pre-multiset and

post-multiset of t are respectively pre(t) = *p1, p2, . . . , pi+ and post(t)
def
= *q1, q2, . . . , qi+.

We say that t is silent if pre(t) = post(t).

A transition t is enabled in a configuration C, if C ≥ pre(t). If t is executed from a
configuration C, we reach the configuration C ′ = (C	pre(t))+post(t). It is denoted by

C
t−→ C ′. Note that, if t is silent, then C = C ′. We write C

∗−→ C ′ if there exists a finite

number of transitions δ1, ..., δk such that C = C0
δ1−→ C1...

δk−→ Ck = C ′. In this case, we
say C ′ is reachable from C.

Let M be a set of configurations, and let t be a transition. We define:

pre(M, t) = {C ′ : C ′ ∗−→ C for some C ∈M},

pre(M) =
⋃
t∈T

pre(M, t),

and further,

pre0(M) =M,

prei+1(M) = pre(prei(M)) for every i ≥ 0 ,

pre∗(M) =
∞⋃
i=0

prei(M).

We can extend the same idea for the postsets, as well, with:

post∗(M) =
∞⋃
i=0

posti(M).

2.3 Petri nets

Petri nets are similar to population protocols, but are broader and more generic models
of computation.

A Petri net N = (P, T, F ) consists of a finite set P of places, a finite set T of
transitions, and a flow function F : (P × T ) ∪ (T × P ) → N. Given a transition t ∈ T ,
the multiset pre(t) of input places of t is defined as pre(t)(p) = F (p, t). Likewise, the
post(t) of output places of t is defined as post(t)(p) = F (t, p).
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A marking M of a net N is a multiset of places. This is equivalent to a configuration
in population protocols. A transition t ∈ T is enabled at a marking M if pre(t) ≤ M .

If it is fired and reaches a marking M ′, we denote that as M
t−→M ′. Let σ = t1 . . . tk be

a finite sequence of transitions. We write M
σ−→ M ′ if there exist markings M0, . . . ,Mk

such that M = M0
t1−→M1

t2−→ . . .
tk−→Mk = M ′. If this holds, we say that M ′ is reachable

from M .
The primary difference between Petri nets and population protocols is that pop-

ulation protocols conserve the number of agents in an execution, whereas this is not
necessarily the case for Petri nets. In fact, population protocols are a subclass of Petri
nets called conservative Petri nets.

2.4 Stability and well-specification

An execution C0, C1, ... stabilises to b for a given b ∈ {0, 1} if there exists n ∈ N such
that O(Cm) = b for every m ≥ n. A configuration C is said to be output-stable if all
agents agree on the output and continue to agree in all successor configurations, that is,
O(C) = O(C ′) 6= ⊥ for every configuration C ′ reachable from C. A configuration that
is not output-stable is said to be output-unstable.

Since executions are infinite, instead of requiring termination, we look at convergence
of the protocol. Let σ be an execution. Then by σ(i) = C, we denote that the ith

configuration in the execution is C .We say that an execution σ converges to an output
value b if there exists i ≥ 0 so that for all j ≥ i, it holds that O(σ(j)) = b. We write
O(σ) = b for this. This means transitions will still occur, and the states of agents
can still change, but their output values must remain the same. We also say that the
computation has reached a lasting consensus. Convergence and stability are equivalent
notions.

A protocol is well-specified if it computes a value for each of its infinitely many initial
configurations. In other words, if every fair execution of the protocol from a given input
configuration stabilises to the same value, it is said to be well-specified. More formally,
a protocol is well-specified if for all initial configurations C0, there exists b ∈ O such that
for all executions σ, if σ(0) = C, then O(σ) = b.

2.5 Upward closures

A set U ⊆ Nd is said to be upward closed if for every u ∈ U,m ∈ Nd, we have u ≤ m =⇒
m ∈ U . The upward closure of a configuration u ∈ Nd is the set {m ∈ Nd|u ≤ m},
denoted by ↑ u. The upward closure of any set M ⊆ Nd is the set

⋃
m∈M ↑ m, denoted

by ↑M .
Further, we have that ↑ M is the least upward closed set that contains M . Since

Nd is well-quasi-ordered by ≤, for any upward closed set U ⊆ Nd, there exists a finite
set F ⊆ U such that U =↑ F . This means that upward closed sets can be symbolically
represented by finite sets. Such a set is called an upward basis (basis for short) of the
upward closed set U . It is minimal for inclusion among all bases, and is called the
minimal upward basis (minimal basis for short) of the upward closed set U .
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2.6 Global fairness

It is necessary to have a formalised notion of fairness to ensure that valid computations
take place in a protocol. We define global fairness as follows:

Definition 2.1. (Global fairness). Let P = (Q,T,Σ, I, O) be a population protocol.
For all configurations C,C ′ ∈ Pop(Q), and all executions σ, if C occurs infinitely often

in σ, and C
∗−→ C ′, then C ′ occurs infinitely often in σ.

While we have the concept of global fairness, it is still important to understand
the definition of a fair execution. We see that this is closely related to the concept of
the BSCCs of the reachability graph of a configuration. An execution σ starting from
configuration C is fair iff σ visits all nodes of some BSCC of C infinitely often.

To understand this idea, we first observe that σ cannot visit configurations in two
different BSCCs infinitely often, since by definition, there are no outgoing edges from a
BSCC. Similarly, σ cannot visit configurations from multiple SCCs infinitely often, since
there are no cycles between SCCs. Thus, σ must be a proper subset of a BSCC, or a
subset of a SCC.

Let us assume that σ is a proper subset of a SCC. Then, there exists a configuration
v in the SCC such that v /∈ σ. On the other hand, if we assume that σ is a SCC, by
definition, there exists some node v outside the SCC that is reachable from the SCC.
Hence, in both cases, there exists a configuration v that is reachable infinitely often, but
is never reached. This is a contradiction to the fairness condition. Thus, σ must be a
proper subset of a BSCC. And we know that if σ is a proper subset of a BSCC, it can
only visit the nodes inside the BSCC, and it does visit them all infinitely often. Thus,
the fairness condition is preserved.

3 Silent and non-silent protocols

Protocols in literature have been classified into two types, silent and non-silent. Silent,
or terminating protocols, are protocols where the protocol stabilises to a single con-
figuration after a finite period of time, in all fair executions. Non-silent protocols are
protocols where the protocol need not stabilise to a single configuration, but reaches a
strongly connected component after finite amount of time.

Silent protocols were introduced in [13]. A protocol is silent if communication be-
tween agents eventually stops, i.e, every fair execution eventually stays in the same
configuration forever. It is important to note that there can be well-specified protocols
which are not silent, as long as the configurations that the executions keep alternating
between are in a consensus, with the same output.

Formally, we say that an execution C0C1 . . . is silent if there exists a configuration C
and an n ∈ N, such that Ci = C for all i ≥ n. We say that a configuration C is terminal
if C

∗−→ C ′ implies C = C ′. In other words, if every transition enabled at C is silent, then
C is terminal. A population protocol P is silent if every fair execution of P is silent,
regardless of the initial configuration. A protocol that is well-specified and silent is a
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WS2protocol, and all these protocols are represented by the set WS2, described first in
[9].

The protocols in the WS2 class are exactly the protocols satisfying the following two
properties:

• Termination : for every configuration C, there exists a terminal configuration
C ′ such that C

∗−→ C ′.

• Consensus: for every initial configuration C0, there exists b ∈ {0, 1} such that
every terminal configuration reachable from C0 has an output b.

In [9], the authors went on to further refine the class of silent well-specified protocols
to describe a class defined as WS3. The tool developed in [8], Peregrine, can suc-
cessfully verify silent protocols, which belong to the WS3 class, but cannot verify any
protocol that is non-silent.

We now look at an example of a population protocol. The threshold predicates
are of the form a1x1 + a2x2 + · · · + adxd < c, with parameters a1, . . . , ad, c ∈ Z, and
x1, . . . , xd ∈ N being the input variables. We look at a special case of threshold predicates
is known as the flock-of-birds predicate, described originally as follows. Consider a flock
of birds, where each bird either has normal or elevated temperature, and fix some natural
number n. The question is: are there more than n birds with elevated temperature?

We look at two different population protocols that can compute this predicate. The
first one was defined as Threshold in [11]. It is intuitively described as follows. When
two agents in the same state k meet, one of them assumes the value of the immediate
successor k + 1, while the other is left unchanged k. However, if the value n is reached,
the agents with the value n will try to form a consensus by interacting with every agent
and converting its state to n.

Example 3.1. (Silent protocol to compute x ≥ n).

The states are Qn
def
= {0, 1, . . . , n}, and the initial state is In

def
= {1}.

The output mapping is defined as On(n)
def
= 1, and On(q)

def
= 0, ∀q 6= n.

For every state q ∈ Qn, let val(q) denote the number q stands for, i.e. val(0) =
0, val(n) = n and val(i) = i, for every 0 ≤ i ≤ n. For any configuration C, val(C) =
Σq∈Q val(q).C(q).
The set of transitions Tn is the union of two sets T1 and T2, and are as follows:

T1 : i, i 7→ i + 1, i for every 0 < i < n.
T2 : n, q 7→ n,n for every q ∈ Qn.

As we can see, T1 is the set of all transitions that add up to reach n, if possible. And
once n is reached, T2 attracts all the other agents to n to form a consensus. We can see
that eventually, all the agents will reach n if there are at least n agents to begin with,
otherwise all of them will assume one value less than or equal to the sum of the initial
agents. It is, therefore, a silent protocol.
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The representation of the protocol is seen in Figure 1, for the predicate x ≥ 3. The
transitions from the set T1 are labelled as T 1

1 and T 2
1 . The transitions from the set T2 are

labelled as T 0
2 , T

1
2 and T 2

2 . The states representing 0, 1, 2, 3 are S0, S1, S2, S3 respectively,
and we represent the fact that S3 has a different output than the other states by giving
the state a different colour.

An example of an execution with the initial configuration being C0 = (0, 3, 0, 0) in
this protocol is as follows.

(0, 3, 0, 0)
T 1
1−→ (0, 2, 1, 0)

T 1
1−→ (0, 1, 2, 0)

T 2
1−→ (0, 1, 1, 1)

T 1
2−→ (0, 0, 1, 2)

T 2
2−→ (0, 0, 0, 3),

which is a terminal configuration.

S1 T 1
1

S2

T 2
1

T 2
2

T 1
2

S3
T 0
2S0

2

2

2

22

Figure 1: Flock of birds protocol to compute x ≥ 3

However, not all protocols which are of small sizes are silent. In [7], it was found
that there exists a succinct protocol to compute the predicate x ≥ n with O(log n) states
which is not silent.

Intuitively, this protocol tries to reach a consensus by trying to reach the exact binary
representation of the threshold value. Since the transitions in T1 and T2 are reversible,
the protocol can reach all possible binary representations, and hence, it will eventually
reach the representation that will enable T3. However, since the transitions in T1 and
T2 are reversible, if T3 is never enabled, the protocol can alternate between various
representations. Hence, it is non-silent if the initial value is less than the threshold. It
is described formally in the example below.

Example 3.2. (Non-silent protocol to compute x ≥ n).
The states are Qn

def
= {0, 20, . . . , 2size(n), n}, and the initial state is In

def
= {20}.

The output mapping is defined as On(n)
def
= 1, and On(q)

def
= 0, ∀q 6= n.

For every state q ∈ Qn, let val(q) denote the number q stands for, i.e. val(0) =
0, val(n) = n and val(2i) = 2i, for every 0 ≤ i ≤ size(n). For any configuration C,
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val(C) = Σq∈Q val(q).C(q).
Tn is the union of two sets T 1

n and T 2
n . Intuitively, T 1

n includes all the transitions that
change the representation of a number m to other representations of the number m. The
transitions in T 1

n are:

T1 : 2i,2i 7→ 2i+1,0 for every 0 ≤ i < size(n).
T2 : 2i+1,0 7→ 2i,2i for every 0 ≤ i < size(n).
T3 : *2i : i ∈ bits(n)+ 7→ n, . . . ,n.︸ ︷︷ ︸

|bits(n)|copies

T 2
n has transitions in which agents in the state n interact with other agents to reach a

consensus. The transitions in T 2
n are:

T4 : n, q 7→ n,n for every q ∈ Qn.

This protocol is not silent if m < n, since agents can interact and go from one
representation to other representations of m. Hence, we cannot use Peregrine to
verify this family of protocols.

An example of a fair execution with the initial configuration being C0 = (0, 2, 0, 0)
in the protocol to check the predicate x ≥ 3 is as follows.

(0, 2, 0, 0)
T 1
1−→ (0, 0, 1, 0)

T 1
2−→ (0, 2, 0, 0)

T 1
1−→ (0, 0, 1, 0)

T 1
2−→ . . . Hence, it is non-silent.

4 Unstable population protocols

The first approach used to address the problem of the verification of non-silent protocols
uses the backwards reachability algorithm in order to ensure that every initial configu-
ration would eventually reach stable configurations of the same opinion in all possible
executions. Observe that stability is downward closed. In other words, every reachable
configuration from a stable configuration C is stable, and of the same opinion as C.
Conversely, the set of unstable configurations is upward closed. We use this property to
find the basis for the set of all unstable configurations.

In order to find the finite basis for the set of all output-unstable configurations U ,
we define two sets of configurations M1 and M2 as follows:
M1 is the set of all configurations such that exactly two agents are present, and both of
them have conflicting outputs:

M1 = {C : |C| = 2 ∧O(C) =⊥}.

M2 is the set of all configurations C such that there exists a transition t and C
t−→ C ′

where C and C ′ both form a consensus, but of different outputs:

M2 = {C : C −→ C ′ ∧O(C) 6=⊥ ∧ O(C ′) 6=⊥ ∧ O(C) 6= O(C ′)}.

Let M =M1 ∪M2. We now have the following lemma.

11
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Lemma 4.1. pre∗(↑ M) is the set of all output-unstable configurations.

Proof. Let us assume to the contrary that there exists a configuration C, which is output-
unstable, but not present in pre∗(↑ M). Any configuration that is output-unstable falls
into one of the following two categories:

a) The configuration has two states with conflicting outputs, O(C) =⊥, or the con-
figuration is in a consensus but can lead to a different configuration that is in a
conflict, i.e. O(C) 6=⊥ but there exists C ′ such that C

∗−→ C ′ and O(C ′) =⊥.

b) The configuration is in a consensus but eventually goes to a configuration that is
in a consensus of the opposite output, i.e. O(C) 6=⊥ but there exists C ′ such that

C
∗−→ C ′ and O(C ′) 6=⊥ and O(C) 6= O(C ′).

For case (a), any configuration C such that O(C) = ⊥ is in ↑ M, because C ∈↑ M1 ⊆↑
M ⊆ pre∗(↑ M). So, if O(C) = ⊥, then C ∈ pre∗(↑ M). If O(C) 6= ⊥, but there exists

C ′ such that O(C ′) = ⊥ and C
∗−→ C ′, we have C ′ ∈ pre∗(↑ M), and C ∈ pre∗(C ′),

hence, C ∈ pre∗(↑ M). Thus, we have a contradiction.
For case (b), we have C −→ C1 −→ ... −→ C ′, and O(C) 6= O(C ′) 6= ⊥. Let i be the first

index such that O(Ci) 6= O(C). If O(Ci) = ⊥, then Ci ∈↑ M and hence, C ∈ pre∗(↑ M).
Otherwise, from the definition of M2, Ci−1 ∈M2. Thus, C ∈ pre∗(↑ M).

Using the result above, we can see that we can compute the basis of the output-
unstable elements, using backwards reachability. The general idea of the backwards
reachability algorithm, introduced in [1], is to start at the target configurations to be
covered (in this case, the set M), and repeatedly compute the (minimal) predecessor
configurations that reach this set of target configurations by application of one of the
transitions. All such minimal configurations are added to the set of target configurations,
and the process is repeated until a fixed point is reached.

Algorithm 1 Backwards reachability algorithm

Input:
Population protocol P = (Q,T,Σ, I, O) and a set of target markings M.

1: M :=M;
2: while (B := preUpward(M)\ ↑M) 6= ∅ do: . preUpward computes the minimal

predecessor configurations for each element in M
3: mergeUpward(B,M); . mergeUpward merges the sets B and M and retains

the minimal elements in M
4: end while
5: return M ;

Now that we have the basis for the unstable elements, we can ensure that no initial
configuration will reach two different stable configurations of opposing outputs in two
separate executions. However, we see that this is not sufficient to prove well-specification,
since it is possible that the protocol ends up in a bottom component where there are

12



Internship Report - MPRI M1 Verification of Population Protocols

configurations which are not in a consensus. Our algorithm does not check for this
possibility. Hence, we see that the notion of backwards reachability to get the basis for
the output-unstable elements does not solve the entire problem of well-specification.

5 Automatic Verification using Acceleration

We now look at the concept of loop acceleration, introduced in [6], to try and prove the
correctness problem for a subclass of population protocols.

Definition 5.1. (Flat protocol). A population protocol P is flat if ∃w?1w?2 . . . w?n = π,
such that wi ∈ T ∗. Then for all configurations C reachable from any initial configuration
C0, C0

π−→ C.

It was proved in [6] that every Petri net whose reachability set is semilinear is flat.
Using the tool FASTer developed in [5] by Leroux and others, we were able to verify
correctness for a non-silent protocol that was previously not known to be verified.

In [7], the authors showed that any predicate of the kind x ≥ n has an equivalent
protocol of size O(log n). This protocol is described in Example 3.2. However, this pro-
tocol is non-silent, and hence, can not be automatically verified by Peregrine. We can
use acceleration techniques introduced previously and prove that this protocol is correct.

Before we prove correctness of the protocol, we first define the relation between two
transitions. We say a transition ti is independent of a transition tj if no agent in the
pre-set of ti is in the same state as any agent in the post-set of tj . In other words, ti
is independent of tj if ti can be fired before tj , or •ti ∩ t•j = ∅. We abuse the notation

slightly below, and by T ∗1 , we mean t∗1t
∗
2 . . . t

∗
n, where ti ∈ T1 and ti : 2i, 2i 7→ 2i+1, 0. We

extend this notation to T ∗2 and T ∗4 .

Lemma 5.1. The protocol given in Example 3.2 is flat, and if ∃C,C ′ such that C
∗−→ C ′,

then C
π−→ C ′, where π = T ∗1 T

∗
2 T3T

∗
4 .

Proof. We make the following observations.
Firstly, we see that within the set T1, all the transitions of the form 2i, 2i 7→ 2i+1, 0

are independent of all the transitions 2j , 2j 7→ 2j+1, 0, if i < j. In other words, transitions
involving states of lower indices can be fired before the transitions of higher indices. This
can be observed in the converse fashion in case of transitions in T2. And we see, in case
of T4, that all transitions can be fired independently of one another.

Next, we prove that transitions in the set T1 can be fired in the beginning, or can
be omitted from the sequence altogether, using induction. Let us assume that we can
reach a configuration C ′ from C by an arbitrary sequence of transitions. Let us assume
that transitions from the set T\T1 have been fired, followed by a transition ti, such that
ti ∈ T1. Let ti be 2i, 2i 7→ 2i+1, 0.

Now we see that there are two possibilities. Either there were two agents in state 2i

initially, or they were the result of some transitions in the course of the execution.

13
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In the first case, we can just execute this transition before the transitions preceding
it, and we would still arrive at the same configuration. In the second case, we observe
that the only transition which could generate agents in state 2i is the transition t′i from
T2 which is 2i+1, 0 7→ 2i, 2i. However, in this case, we can omit both ti and t′i from
the sequence and still arrive at the same configuration. We can inductively go through
the transition sequence in this fashion and eliminate or shift the transitions in T1 to the
beginning. Hence, we see that all the transitions in T1 can be fired initially or completely
omitted.

Now, we observe that T2 is independent of T3 and T4, and T3 is independent of T4.
Hence, we can fire execute the transitions in T2, followed by the transition in T3 and
finally execute all the transitions in T4.

Thus, we can reach any configuration C ′ from C through π, if we can reach it
otherwise. Hence, the protocol supports flat acceleration.

Now that we see that the protocol supports flat acceleration, we run the algorithm
below to check its correctness. The pseudocode for the algorithm is given in Algorithm
2. We define init0 to be the set of all initial configurations for which the predicate P
evaluates to 0. We define basicUnstable as the set of all configurations such that there
is at least one agent with value 0 and one agent with value 1. consensus0 is the set of all
configurations where there is at least one agent with output 0, and no agent with output
1. We can extend the definitions for the other terms in the algorithm by swapping 0
with 1 and vice-versa. P(I) is the predicate for the initial configurations in the protocol
P .

Algorithm 2 Pseudocode for checking correctness of protocols.

Input:
Population protocol P = (Q,T,Σ, I, O) and a predicate P(I).

1: init0 := {P.initialStates >= 2 && P.nonInitialStates = 0 && P(I) = False};
2: init1 := {P.initialStates >= 2 && P.nonInitialStates = 0 && P(I) = True};
3: basicUnstable := {P.trueStates >= 1 && P.falseStates >= 1};
4: consensus0 := {P.trueStates = 0 && P.falseStates >= 1};
5: consensus1 := {P.trueStates >= 1 && P.falseStates = 0};
6: stable0 := (!pre∗(basicUnstable))&&consensus0;
7: stable1 := (!pre∗(basicUnstable))&&consensus1;
8: postSpec0 := post∗(init0);
9: postSpec1 := post∗(init1);

10: preStable0 := pre∗(stable0);
11: preStable1 := pre∗(stable1);
12: if {!isSubset(postSpec0, preStable0)||!isSubset(postSpec1, preStable1)} then
13: return false;
14: else
15: return true;

14



Internship Report - MPRI M1 Verification of Population Protocols

We see that the above protocol can be verified correct by FASTer, since the pre∗

and post∗ both support flat acceleration. We now prove that it is sufficient to check if
post∗(init0) ⊆ pre∗(stable0) and post∗(init1) ⊆ pre∗(stable1) to verify correctness of the
protocol.

Lemma 5.2. If we know that post∗(init0) ⊆ pre∗(stable0) and post∗(init1) ⊆ pre∗(stable1),
we can say the protocol is correct.

Proof. We define a protocol to be correct when it behaves correctly on all executions of
all possible configurations. We first prove well-specification, and then extend the result
to correctness.
Let us assume to the contrary, that the protocol is ill-specified. There can be two cases for
that scenario. The first possibility is that there is some bottom strongly connected com-
ponent in the protocol that has no opinion. Let us assume we can reach a configuration
C in such a bottom component from an initial configuration. Without loss of generality,
we assume this configuration is in init1. By our result, post ∗ (init1) ⊆ pre∗(stable1),
hence, C ∈ pre∗(stable1). In other words, there is an execution in C that leads to a
stable configuration. This is a contradiction because we assumed C to be in a bottom
configuration of no consensus. Hence, this cannot occur.
The second possibility is that there exists a configuration C ′ in the protocol that can
reach a bottom component of two different opinions in two different executions. In other
words, post∗(C ′) ⊆ pre∗(stable1) and post∗(C ′) ⊆ pre∗(stable1). But then we have a con-
tradiction because ∃C0 ∈ stable0 : C0 ∈ post∗(C ′) and then we have, C0 ∈ pre∗(stable1)
which is a contradiction to the definition of a stable configuration.
Thus, it is sufficient to prove post∗(init0) ⊆ pre∗(stable0) and post∗(init1) ⊆ pre∗(stable1)
to prove well-specification. And it follows from our definition of initial sets init0 and
init1, that it reaches the correct consensus when it is well-specified. Hence, the protocol
is correct.

6 Experimental results

Apart from the non-silent protocol described in section 3, we evaluated the algorithm
on a set of benchmarks: the remainder protocols of [4], the majority protocol of [2], the
broadcast protocol of [11] and three versions of the flock of birds protocol from [10, 11,
7]. We checked the parametric protocols for increasing values of their primary parameter
until we reached a timeout.

All experiments were performed on the same machine equipped with an 1,8 GHz
Intel Core i5 and 8 GB of RAM. The time limit was set to 30 minutes. The results are
shown in the table below. In all examples, we were able to terminate successfully for the
smaller protocols in the family.

Below is the table for the verification of the protocol families mentioned above, and
the performance of FASTer for the smaller families .
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Protocol vmax |Q| |T | Time

Majority 4 4 1

Broadcast 2 1 0.8

Remainder
(modulo 1)

2 4 5 4
3 5 4 78

Flock of birds [10]
3 4 6 8
4 4 5 1
8 5 7 16

Flock of birds [11]
3 4 10 1
4 5 17 0.9
5 6 26 2

Flock of birds [7]
3 4 3 2
4 4 4 1

Table 1: Results of the experimental evaluation of FASTer [5] on various protocols,
where vmax denotes the parameter if any, |Q| and |T | denote the number of states and
the number of transitions in the population protocol, and the last column is the amount
of time required to verify the correctness of the protocol in seconds.

However, since the tool seems to be successful in verifying correctness for small
numbers, it may be possible that all these protocols are, indeed, flat. This has yet
to be formally verified, but the results look assuring. Hence, we conjecture that every
Presburger definable predicate must have an equivalent population protocol which is
flat.

7 Conclusion

We initiated the study of automatic verification of correctness of non-silent protocols.
Previous methods were only known for a subclass of protocols known as strongly silent
protocols. Using ideas of acceleration and flatness, we have been able to verify the
correctness of the flock-of-birds protocol as described in [7].

There are many open questions. We conjecture that all strongly silent protocols
have an equivalent protocol that is flat. Another intriguing question is whether all
such protocols are succinct. In other words, we are still yet to explore whether these
flat protocols would be comparable in size to the protocols in the WS3 class [9]. The
possibility to enhance the flat protocol model to experimentally verify a larger threshold
is also another avenue that can be explored. Finally, it will be interesting to see if
there are any protocols which cannot be succinctly characterised by an equivalent flat
protocol.
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[6] Sébastien Bardin et al. “Flat Acceleration in Symbolic Model Checking”. In: Au-
tomated Technology for Verification and Analysis. Ed. by Doron A. Peled and
Yih-Kuen Tsay. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 474–
488. isbn: 978-3-540-31969-6.

[7] Michael Blondin, Javier Esparza, and Stefan Jaax. “Large Flocks of Small Birds:
on the Minimal Size of Population Protocols”. In: 35th Symposium on Theoret-
ical Aspects of Computer Science (STACS 2018). Ed. by Rolf Niedermeier and
Brigitte Vallée. Vol. 96. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 16:1–
16:14. isbn: 978-3-95977-062-0. doi: 10.4230/LIPIcs.STACS.2018.16. url:
http://drops.dagstuhl.de/opus/volltexte/2018/8511.

[8] Michael Blondin, Javier Esparza, and Stefan Jaax. “Peregrine: A Tool for the
Analysis of Population Protocols”. In: Computer Aided Verification. Ed. by Hana
Chockler and Georg Weissenbacher. Cham: Springer International Publishing, 2018,
pp. 604–611. isbn: 978-3-319-96145-3.

[9] Michael Blondin et al. “Towards Efficient Verification of Population Protocols”.
In: Proceedings of the ACM Symposium on Principles of Distributed Computing.
PODC ’17. Washington, DC, USA: ACM, 2017, pp. 423–430. isbn: 978-1-4503-

17

https://doi.org/https://doi.org/10.1006/inco.1999.2843
http://www.sciencedirect.com/science/article/pii/S0890540199928432
http://www.sciencedirect.com/science/article/pii/S0890540199928432
https://doi.org/10.1145/1146381.1146425
http://doi.acm.org/10.1145/1146381.1146425
https://doi.org/10.1145/1011767.1011810
http://doi.acm.org/10.1145/1011767.1011810
https://doi.org/10.1007/s10009-008-0064-3
https://doi.org/10.1007/s10009-008-0064-3
https://doi.org/10.1007/s10009-008-0064-3
https://doi.org/10.4230/LIPIcs.STACS.2018.16
http://drops.dagstuhl.de/opus/volltexte/2018/8511


Internship Report - MPRI M1 Verification of Population Protocols

4992-5. doi: 10.1145/3087801.3087816. url: http://doi.acm.org/10.1145/
3087801.3087816.

[10] Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis. “Algorithmic Ver-
ification of Population Protocols”. In: Stabilization, Safety, and Security of Dis-
tributed Systems. Ed. by Shlomi Dolev et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 221–235. isbn: 978-3-642-16023-3.

[11] J. Clement et al. “Guidelines for the Verification of Population Protocols”. In:
2011 31st International Conference on Distributed Computing Systems. June 2011,
pp. 215–224. doi: 10.1109/ICDCS.2011.36.
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