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Abstract

Asynchronous distributed processes communicating using First In First Out
(FIFO) channels are widely used for distributed and concurrent programming. How-
ever, since they can simulate Turing machines, most verification properties are un-
decidable for them. Hence, there is a need to analyze subclasses which are powerful
yet have decidable properties. Towards this goal, we analyze two underapproxi-
mations of general FIFO systems: 1) Systems with input-bounded runs (i.e. the
sequence of messages sent through a particular channel belongs to a given bounded
language), and 2) Synchronizable systems (i.e. if every execution can be rescheduled
so that it meets certain criteria, e.g., a channel bound). For the former, we have
shown that rational-reachability (and by extension, control-state reachability, dead-
lock, boundedness, etc.) are decidable. For the latter, we provide a framework, that
unifies existing definitions, and allows one to easily derive decidability results for
synchronizability. We plan to finish the study on these systems, and then analyze
the same problems for reversal-bounded systems along with its complexity in order
to construct a tool.

1 Introduction

Communication with asynchronous message passing is widely used in concurrent and
distributed programs implementing various types of systems such as communication
protocols [41], hardware design, MPI programs, and more recently for designing and
verifying session types [34], web contracts, choreographies, concurrent programs, Er-
lang, Rust, etc. An asynchronous message passing system is built as a set of processes
running in parallel, communicating asynchronously by sending messages to each other
via channels or message buffers. Messages sent to a given process are stored in its entry
buffer, waiting for the moment they will be received by the process. In general, sending
messages is not blocking for the sender process, which means that the message buffers are
supposed to be of unbounded size. It is well-known that such programs are hard to get
right. Indeed, asynchrony introduces a tremendous amount of new possible interleavings
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between actions of parallel processes, and makes very hard to analyze the effect of all
their computations. In particular, when buffer are ordered (FIFO buffers), the verifica-
tion of reachability queries is undecidable even when each of the processes is finite-state
[9]. This gives rise to the interest of studying underapproximations, which restrict the
behavior of general FIFO systems in turn having decidable verification properties.

1.1 Communicating Systems and Message Sequence Charts

We define a message passing system as the composition of a set of processes that exchange
messages, which can be stored in FIFO buffers before being received. Each process is
described as a state machine that evolves by executing send or receive actions. An
execution of such a system can be represented abstractly using a partially-ordered set
of events, called a trace. The partial order in a trace represents the causal relation
between events. We show that these systems satisfy causal delivery, i.e., the order in
which messages are received by a process is consistent with the causal relation between
the corresponding sendings.

Message Sequence Charts (or MSCs) provide a trace language for the specification
and description of the communication behavior of system components and their envi-
ronment by means of message interchange. Processes are represented as vertical lines,
and horizontal arrows (which we call events) represent messages from one component to
another.

1.2 Reachability in FIFO systems

If one restricts to runs with B-bounded channels (the number of messages in every chan-
nel does not exceed B), then reachability becomes decidable for existentially-bounded
and universally-bounded FIFO systems [23]. When limiting the number of phases,
the bounded-context reachability problem is in 2-EXPTIME, even for recursive FIFO
systems [33, 29]. For non-confluent topology, reachability is in EXPTIME for recur-
sive FIFO systems with 1-bounded channels [29]. The notion of k-synchronous com-
putations was introduced in [8]. Reachability under this restriction and checking k-
synchronizability are both PSPACE-complete [26]. Reachability is in PTIME in half-
duplex systems [10] with two processes (moreover, the reachability set is recognizable
and effectively computable), but the natural extension to three processes leads to unde-
cidability. Lossy FIFO systems (where the channels can lose messages) [1, 18] have been
shown to be well-structured and have a decidable (but non-elementary) reachability
problem [11]. In [37, 2], uniform criteria for decidability of reachability and model-
checking questions are established for communicating recursive systems whose restricted
architecture or communication mechanism gives rise to behaviors of bounded tree-width.

1.3 MSO Logic and Special Tree-width

In mathematical logic, monadic second-order logic (MSO) is the fragment of second-
order logic where the second-order quantification is limited to quantification over sets.
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The main appeal of the study of this language is that it is decidable for many sets of
(finite or infinite) structures. It is particularly important in the logic of graphs, because
of Courcelle’s theorem [12], which provides algorithms for evaluating monadic second-
order formulas over graphs of bounded tree-width.

Second-order logic allows quantification over predicates. However, MSO is the frag-
ment in which second-order quantification is limited to monadic predicates (predicates
having a single argument). This is often described as quantification over “sets” because
monadic predicates are equivalent in expressive power to sets (the set of elements for
which the predicate is true).

Special tree-width [13], is a graph measure that indicates how close a graph is to a tree
(we may also use classical tree-width instead). This or similar measures are commonly
employed in verification. For instance, tree-width and split-width have been used in [14]
to reason about graph behaviors generated by pushdown systems. Here we wish to apply
it to reason about MSCs. We adopt the following game based definition from [7].

Adam and Eve play a two-player turn based “decomposition game” whose positions
are MSCs with some pebbles placed on some events. Eve’s positions are marked MSC
fragments (an MSC with possibly some edges removed) and U the subset of marked
events. Adam’s positions are pairs of marked MSC fragments. Eve can choose to mark
some events of the MSC, remove some edges, and/or divide the MSC fragment into
two such that the original fragment is the disjoint union of the two resulting fragments.
When it is Adam’s turn, he simply chooses one of the two marked MSC fragments. We
say that the game is k-winning for Eve if she has a (positional) strategy that allows her
to reach a terminal position such that, in every single position visited along the play,
including the final one, there are at most k + 1 marked events.

2 Input-bounded systems

Asynchronous distributed processes communicating using First In First Out (FIFO)
channels are being widely used for distributed and concurrent programming. Since such
systems of communicating processes, which communicate through (at least two) one-
directional FIFO channels, can simulate Turing machines, most verification properties,
such as testing the unboundedness of a channel, are undecidable for them [9, 39, 40].

Many papers from the 1980s to today have studied FIFO systems in which the input-
language of a channel (i.e. the set of words that enter in a channel) is included in the set
of prefixes Pref (B) of a particular bounded language B = w∗

1w
∗
2...w

∗
n. We call this class

of FIFO machines input-bounded. When the set of letters that may enter in a channel c
is reduced to a unique letter ac, then the input-language of c is included in a∗c and this
subclass trivially reduces to VASS (Vector Addition Systems with States) and Petri nets
[42]. A variant of the reachability problem, the deadlock problem, is shown decidable
for input-letter -bounded FIFO systems in [27]. There are some other subclasses of this
model for which some classical properties were shown decidable, such as monogeneous
FIFO nets [17], linear FIFO nets [19], and flat systems [16, 21].
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We may use the previous decidability results as an underapproximation for any gen-
eral FIFO machines over bounded languages. While all the executions of the machine
may not be input-bounded, we can use our methods to verify whether the executions
conforming to this condition satisfy a given property. Moreover, if there is a bug in
the restricted reachability set (or an unfavorable configuration is reached via an input-
bounded execution), we can immediately deduce that the original machine is unsafe.

Our contributions: We solve a problem left open in [27] regarding the decidability
of the reachability problem for input-bounded FIFO machines. It is formalized in the
theorem below.

Theorem. Input bounded rational-reachability is decidable for FIFO machines.

The overarching idea of the proof is to construct a counter machine which models
the FIFO machine. Since we are considering only executions that belong to a tuple
of bounded languages, the set of words that enter a channel are included in w∗

1 . . . w
∗
n

for some words w1, . . . , wn. In the corresponding machine, we have a counter for each
word w1, . . . , wn. These counters are incremented every time a letter associated to these
words is sent to the channel, and decremented if the letter is received from the channel.
Furthermore, we need to ensure the FIFO property of the channel, i.e. a letter from wi

is received only if no letters from words w1, . . . , wi−1 are present in the channel. This
is done by adding zero tests for the counters. Since the language is bounded, we show
that we can impose a restriction on these zero test. Thus, the question of reachability
of a configuration (q, w) now corresponds to the reachability of a configuration in the
associated counter machine (with restricted zero tests).

Reachability in presence of these restricted zero tests straightforwardly reduces to
configuration-reachability in classical counter machines without zero tests (i.e., VASS
and Petri nets) by delaying the zero tests to the end of the run and checking only once.
The latter is known to be decidable [38], though inherently non-elementary [15].

We extend this result to other verification properties like unboundedness, control-
state reachability and termination. Moreover, we also extend reachability to rational
reachability that allows to deduce the decidability of and deadlock. The results are
summarized in the table below.

Table 1: Summary of key results; results for all other extensions are subsumed by these
results (D stands for decidable).

Flat Letter-bounded Bounded

UNBOUND NP-C ([21]) D ([27]) D ([31])

TERM NP-C ([21]) D D

REACH NP-C ([21]) D D, not ELEM

CS-REACH NP-C ([16, 21]) D D

DEADLOCK D D ([27]) D

Furthermore, we study the natural dual of the input-bounded reachability problem,
which are systems of output-bounded languages in which the set of words received by
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each channel is constrained to be bounded, and are able to deduce the reachability,
unboundedness, termination and control-state reachability for the same.

We obtain better upper bounds for the input-bounded reachability of FIFO machines
with a single channel (reachability is still undecidable for FIFO machines with a single
channel). This is done by reducing it to reachability in unary ordered multi-pushdown
systems (a class that was previously analyzed in [3]). It is, hence, solvable in EXPTIME.

Finally, following the bounded verification paradigm, applied to FIFO machines (for
instance in [16, 21]), we open the way to a methodology that would apply existing results
on input-bounded FIFO machines to general FIFO machines.

3 Synchronizable systems

In 2004, Lohrey and Muscholl introduced existentially k-bounded systems [36] (see also
[35, 25, 24]) where each of its accepting executions leading to a stable (with empty chan-
nels) final configuration can be re-ordered into a k-bounded execution. This property
is undecidable, even for a given k [24]. A more general definition, still called existen-
tially bounded, is given in 2014 where the considered executions are not supposed to
be final or stable [32]. In [36, 28], the notion of universally k-bounded (all accepting
executions are k-bounded) is also discussed and the authors show that the property is
undecidable in general. In 2011, Basu and Bultan introduced synchronizable systems
[4], for which every execution is equivalent (for the projection on sending messages) to
one of the same system but communicating by rendezvous; to avoid ambiguity, we call
such systems send-synchronizable. In 2018, Bouajjani et al. said that a system S is
k-synchronizable [8] (to avoid confusion we call such systems weakly k-synchronizable) if
every MSC of S admits a linearization (which is not necessarily an execution) that can
be divided into sections of at most k messages. After each section, a message is either
read, or will never be read. This constraint seems to imply that buffers are bounded
to k messages. However, as the linearization need not be an execution, it results that
a weakly k-synchronizable execution, even with the more efficient reschedule, can need
unbounded channels to be run by the system.

All these notions amount to asking whether all behaviors generated by a given com-
municating system have a particular shape, i.e., whether they are all included in a fixed
(or given) set of MSCs. Thus, the synchronizability problem is essentially an inclusion
problem.

Our contributions: We show that, for decidability, it is enough to have that the
set of MSCs is MSO-definable and special-tree-width-bounded (STW-bounded). The
main theorem can be summarized as follows:

Theorem. Fix finite sets of processes P and messages M. Let C be a MSO-definable
and special-tree-width-bounded class (over P and M). The following problem is decidable:
Given a communicating system S, and L(S) be the language of S (defined directly as a
set of MSCs), do we have L(S) ⊆ C?

This general framework based on monadic second-order (MSO) logic and (special)
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tree-width captures most existing definitions of systems that may work with bounded
channels and allows us to unify the notions of synchronizability. The framework allows to
simplify the proofs and sometimes lets us extend the statement. Moreover, reachability
and model checking are decidable in this framework.

We generalize the existing notion of (weak) k-synchronizability in [8] and we intro-
duce three new classes of synchronizable systems, called weakly synchronizable (that
are more general than weakly k-synchronizable), strongly synchronizable and strongly
k-synchronizable (which are particular cases of weakly synchronizable). We then prove
that these four properties all fit in our framework and then they are all decidable by
using the same generic proof.

We then deduce that reachability and model checking are decidable for the six classes
of systems (only the control-state was shown decidable for weakly k-synchronizable in
[8] and it is clearly also decidable for existentially/universally bounded systems but
reachability properties are generally not studied for these classes of systems).

A key difference between the works in literature is that they consider different com-
munication architectures. Existentially bounded systems have been studied for p2p (with
one queue per pair of processes), whereas k-synchronizability has been studied for mail-
box communication, for which each process merges all its incoming messages in a unique
queue. Moreover, variants of those definitions can be obtained depending on if we con-
sider messages that are sent but never read, called unmatched messages. We provide a
comparison between the six synchronizable classes both for p2p and mailbox semantics
(as illustrated below). In particular, we clarify the link between weakly synchronizable
and existentially bounded systems for both p2p and mailbox systems, which has been
left open in literature.

Weakly/Strongly synchronizable

Existentially bounded

Universally
bounded

Weakly/Strongly
k-synchronizable

Figure 1: Hierarchy of classes for p2p systems

Weakly
synchro. Existentially

bounded

Weakly
k-synchro.

Strongly
synchro.

Strongly
k-synchro. Universally

bounded

Figure 2: Hierarchy of classes for mailbox systems
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Finally, in order to obtain better complexity results for some classes (strongly and
weakly synchronizable systems), we also use the fragment of propositional dynamic logic
with loop and converse (LCPDL) instead of MSO logic in our framework.

4 Future work

Our research plans for the second half of this PhD is as follows (including a rough time
line):

• June 2021 - August 2021: Complete the study on the decidability of syn-
chronizability and branch WSTS. We plan to submit two papers by August to
an international conference/journal. This effort has already commenced, when we
began the literature survey on synchronizability and the initial work on input-
bounded systems. We are looking to explore the decidability of reachability in
send-synchronizable systems as described in [5, 20].

• August 2021 - December 2021: Study a third subclass of FIFO machines
known as reversal bounded FIFO systems. This class was introduced in [30],
and more recently in [22, 6]. It seems like reversal boundedness could be a more
efficient underapproximation for FIFO systems. If this analysis proves to be more
succinct, we could construct a based on flat, input-bounded and reversal-bounded
FIFO systems with use of existing softwares and algorithms. There is a lack of
verification tools in the literature for the study of FIFO systems, attributing to
the difficulty of the problem.

• January 2022 - March 2022: Apply our framework and use formal methods to
verify web services orchestration and choreography.

• January 2022 - June 2022: Writing of the thesis.

5 Curriculum Vitae

5.1 List of contributions

• Bounded Reachability Problems are Decidable in FIFO Machines. B. Bollig, A.
Finkel, and A. Suresh. In Proceedings of the 31st International Conference on Con-
currency Theory (CONCUR’20), volume 171 of Leibniz International Proceedings
in Informatics, Vienna, Austria, September 2020. Received Best Paper Award.

Submitted

• A Unifying Framework for Deciding Synchronizability. B.Bollig, C. Di Guisto, A.
Finkel, L. Laversa, E. Lozes, A. Suresh. Submitted to CONCUR 2021.

• Bounded Reachability Problems are Decidable in FIFO Machines. B. Bollig, A.
Finkel, and A. Suresh. Extended version submitted to LMCS.
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In progress

• Verification of Branch Well Structured Transition Systems. B. Bollig, A. Finkel,
and A. Suresh, 2021.

• Reachability is Undecidable in Send-Synchronizable Systems. B. Bollig, A. Finkel,
and A. Suresh, 2021.

5.2 Training for ED-STIC

Scientifiic

• MOVEP Summer School 2020 - 36 hours

• Advanced Course on Automata, Logic and Games 2021 - In progress

Non-scientifiic

• Français langue étrangère: niveau B2- 25 hours

• Ethics and STIC - 12 hours

• Programme de mentorat pour les doctorantes - 25 hours

• Writing a scientific paper - 4 hours
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