Programmation 1

TD n°9

17 novembre 2020

Exercise 1: Booleans

We consider $\mathbf{Bool}_{\perp} = \{0, 1, \perp\}$ with the usual ordering $(x < y \text{ if and only if } x = \perp \text{ and } y \neq \perp)$.

- 1. What are the Scott-open sets of \mathbf{Bool}_{\perp} ? What are the Scott-closed ones?
- 2. Show all the monotonic functions from **Bool**_⊥ to **Bool**_⊥.
- 3. Let D be a DCPO, and f a monotonic function from \mathbf{Bool}_{\perp} to D. Show that f is Scott-continuous.
- 4. Design $\mathbf{Bool}_{\perp} \times \mathbf{Bool}_{\perp}$ (product ordering).
- 5. List the Scott-continuous functions f such that f restricted to $\{0,1\}$ defines the Boolean function «OR».

Exercise 2: Topology and separation

- 1. Show that if the Scott topology over (X, \leq) is *separated*, i.e. for any $x \neq x'$ there are two open neighbourhoods U and U' respectively of x and x' whose intersection is empty; then \leq is actually equality over X.
- 2. Show that Scott topology is T_0 , i.e. for any $x \neq x'$ there exists an open neighbourhood of x which does not contain x' or the converse.

Exercise 3: Reals with arbitrary precision

Let $I = \mathbb{R}$ and $J = \{[x, y] \mid x, y \in I, x \leq y\}$ with the \supseteq ordering.

- 1. Show that J is a DCPO. Is it a lattice? Complete?
- 2. Give a monotonic function from J to \mathbf{Bool}_{\perp} which is not Scott-continuous.
- 3. What are the maximal elements of J? We denote M to be the set of maximal elements.
- 4. Let f be a continuous function from J to \mathbf{Bool}_{\perp} . Show that $f^{-1}(\{1\})$ is open.
- 5. Consider the mapping $I: x \mapsto \{x\}$ which goes from [0,1] to J. Show that I is continuous.

Bonus What is the Scott topology restricted to the set of maximal elements?

6. Show that M is connected, i.e. there does not exist disjoint, non-empty open sets U, V such that

$$U \cap M \uplus V \cap M = M$$

- 7. Let g be a continuous function from J to \mathbf{Bool}_{\perp} such that for all $x \in I$, $g(\{x\}) \neq \perp$. Show that g is constant over I.
- 8. Imagine a programming language that implements reals with arbitrary precision using intervals. How will the equality function of this language be computed?

Exercise 4: Optional homework ¹

We consider the language $\{\star, \bullet\}$ equipped with the small-step semantics as shown:

$$X \star \bullet Y \to XY$$
 if $\exists n \geq 0, X = \star^n$
 $X \bullet \star Y \to XY$ if $\exists n \geq 0, X = \bullet^n$

- 1. State and prove the determinism theorem.
- 2. We consider the DCPO $\{0,1\}$ equipped with the flat ordering and the semantics below :

$$\begin{split} [\![\varepsilon]\!]_2 &= 0 \\ [\![aX]\!]_2 &= 1 - [\![X]\!]_2 \end{split} \qquad \text{if } a \in \{\star, \bullet\} \end{split}$$

Show that this semantics is correct with respect to the small-step semantics.

3. Same question for the DCPO of integers equipped with the flat ordering and the following semantics

$$\begin{split} & [\![\varepsilon]\!]_{\mathbb{Z}} = 0 \\ & [\![\star X]\!]_{\mathbb{Z}} = 1 + [\![X]\!]_{\mathbb{Z}} \\ & [\![\bullet X]\!]_{\mathbb{Z}} = -1 + [\![X]\!]_{\mathbb{Z}} \end{split}$$

4. We give the notion of observational equivalence next:

$$A \equiv B \triangleq \forall C[\cdot], C[A] \to^* \varepsilon \iff C[B] \to^* \varepsilon$$

- (a) Show that it is an equivalence relation.
- (b) Are the denotational semantics completely abstract?

^{1.} Answers will be shared on 1st December