Programmation 1

TD n°7

3 novembre 2020

Exercise 1:

1. Give a proof of

$$((x \dotplus (-y)) \dotplus 2, \rho[x \mapsto 3, y \mapsto 2]) \rightarrow_{pp}^* (3, \rho[x \mapsto 3, y \mapsto 2])$$

- 2. State then prove the progress theorem (théorème de progrès)
- 3. State then prove the determinism theorem (théorème de déterminisme)
- 4. Show the correctness of denotational semantics
- 5. Show the adequacy of denotational semantics

Solution:

1. We give a derivation tree in small steps, noting $\rho' = \rho[x \mapsto 3, y \mapsto 2]$:

$$\frac{\frac{(x,\rho)\rightarrow_{pp}(\dot{3},\rho)}{(x\dotplus(\dot{-}y),\rho')\rightarrow_{pp}(\dot{3}\dotplus(\dot{-}y),\rho')}\overset{(\mathrm{Var})}{(+\ell)}}{\frac{(x\dotplus(\dot{-}y),\rho')\rightarrow_{pp}(\dot{3}\dotplus(\dot{-}y),\rho')}{((x\dotplus(\dot{-}y))\dotplus\dot{2},\rho')\rightarrow_{pp}((\dot{3}\dotplus(\dot{-}y))\dotplus\dot{2},\rho')}}$$

$$\frac{\frac{\overline{(y,\rho')\rightarrow_{pp}(\dot{2},\rho')}}{(\dot{-}y,\rho)\rightarrow_{pp}(\dot{-}\dot{2},\rho)}} \overset{\text{(Var)}}{(-)}}{\frac{(\dot{3}\dotplus(\dot{-}y),\rho')\rightarrow_{pp}(\dot{3}\dotplus(\dot{-}\dot{2}),\rho')}{(\dot{3}\dotplus(\dot{-}y))\dotplus\dot{2},\rho')}} \overset{\text{(+}_r)}{((\dot{3}\dotplus(\dot{-}y))\dotplus\dot{2},\rho')\rightarrow_{pp}(\dot{3}\dotplus(\dot{-}\dot{2}))\dotplus\dot{2},\rho')}} \overset{\text{(+}_r)}{(+_\ell)}$$

$$\frac{\frac{(\dot{-}\dot{2},\rho)\rightarrow_{pp}(\dot{-}\dot{2},\rho)}{(\dot{3}\dotplus(\dot{-}\dot{2}),\rho')\rightarrow_{pp}(\dot{3}\dotplus(\dot{-}\dot{2}),\rho')}}_{(\dot{3}\dotplus(\dot{-}\dot{2})),\dot{+}\dot{2},\rho')\rightarrow_{pp}(\dot{3}\dotplus(\dot{-}\dot{2}))\dotplus\dot{2},\rho')}(+_{r})}$$

$$\frac{\frac{(\dot{3}\dotplus\dot{-2},\rho')\rightarrow_{pp}(\dot{1},\rho')}{((\dot{3}\dotplus\dot{-2})\dotplus\dot{2},\rho')\rightarrow_{pp}(\dot{1}\dotplus\dot{2},\rho')}(+_{fin})}{((\dot{3}\dotplus\dot{-2})\dotplus\dot{2},\rho')\rightarrow_{pp}(\dot{1}\dotplus\dot{2},\rho')}$$

$$\frac{1}{(\dot{1} + \dot{2}, \rho') \rightarrow_{pp} (\dot{3}, \rho')} (+_{fin})$$

We obtain the derivation:

$$((x \dotplus (\dot{-}y)) \dotplus \dot{2}, \rho[x \mapsto 3, y \mapsto 2]) \rightarrow_{pp}^* (\dot{3}, \rho[x \mapsto 3, y \mapsto 2])$$

2. (Progress) The only configurations which do not have a successor by the relation \rightarrow_{pp} are configurations of the form (\dot{n}, ρ) .

Proof Let ρ be an environment. We proceed by structural induction over the expression e.

Base case $e = \dot{n}$: The configuration (e, ρ) does not have a successor.

Base case e = x: We have the derivation:

$$\frac{}{(x,\rho)\to_{pp}\widehat{(\rho(x)},\rho)}\;(\mathrm{Var})$$

Therefore, we have a derivation $(e, \rho) \rightarrow_{pp} (\widehat{\rho(x)}, \rho)$ and the configuration (e, ρ) admits a successor.

Case $e = -e_0$: We proceed by a disjunction of cases over the form of the expression e_0 .

If $e_0 = \dot{n}$: We have the derivation

$$\frac{}{(\dot{-}\dot{n},\rho)\to_{pp}(\dot{-}n,\rho)} (-_{\rm fin})$$

Hence, the configuration (e, ρ) admits a successor.

If not, $\forall n, e_0 \neq \dot{n}$: By the induction hypothesis, the configuration (e_0, ρ) admits a successor for \rightarrow_{pp} . Let it be (e'_0, ρ) . We have the derivation:

$$\frac{(e_0, \rho) \to_{pp} (e'_0, \rho)}{(\dot{-}e_0, \rho) \to_{pp} (\dot{-}e'_0, \rho)} (-)$$

Therefore, the configuration (e, ρ) admits a successor.

Case $e = e_1 \dotplus e_2$: We proceed by a disjunction of cases over the form of the expressions e_1 and e_2 .

Case $e_1 = \dot{n}$ and $e_2 = \dot{m}$. We have the derivation :

$$\frac{}{(\dot{n} \dotplus \dot{m}, \rho) \rightarrow_{pp} (\overset{\centerdot}{\widehat{n+m}}, \rho)} \ (+_{\rm fin})$$

Therefore, the configuration (e, ρ) admits a successor.

Case $e_1 = \dot{n}$ and $\forall m, e_2 \neq \dot{m}$: By induction hypothesis, the configuration (e_2, ρ) admits a successor for \rightarrow_{pp} . We denote it as (e'_2, ρ) . We have the derivation:

$$\frac{(e_2,\rho)\rightarrow_{pp}(e_2',\rho)}{(\dot{n}\dotplus{e}_2,\rho)\rightarrow_{pp}(\dot{n}\dotplus{e}_2',\rho)} \ (+_r)$$

Therefore, the configuration (e, ρ) admits a successor.

Case $\forall n, e_1 \neq \dot{n}$: By induction hypothesis, the configuration (e_1, ρ) admits a successor for \rightarrow_{pp} . Let us denote it by (e'_1, ρ) . We have the derivation:

$$\frac{(e_1, \rho) \to_{pp} (e'_1, \rho)}{(e_1 \dotplus e_2, \rho) \to_{pp} (e'_1 \dotplus e_2, \rho)} (+_{\ell})$$

Therefore, the configuration (e, ρ) admits a successor.

By the principle of induction, the only configurations that do not admit a successor for \rightarrow_{pp} are the configurations (\dot{n}, ρ) .

3. (Determinism) The reduction \rightarrow_{pp} is deterministic, i.e. for all e, e_1, e_2, ρ , if $(e, \rho) \rightarrow_{pp} (e_1, \rho)$ and $(e, \rho) \rightarrow_{pp} (e_2, \rho)$, then $e_1 = e_2$.

Proof Let ρ be an environment. We proceed by structural induction on the expression e. We assume that there exists e_1 and e_2 such that $(e, \rho) \to_{pp} (e_1, \rho)$ and $(e, \rho) \to_{pp} (e_2, \rho)$.

Base case $e = \dot{n}$: There does not exist any derivation rule for the configuration (e, ρ) , hence, it has no successor: It holds vacuously.

Base case e = x: The only rule that is applicable at the configuration (e, ρ) is:

$$\frac{}{(x,\rho)\to_{pp}\widehat{(\rho(x)},\rho)}\;(\mathrm{Var})$$

Therefore, $e_1 = e_2 = \hat{\rho(x)}$.

Case $e = -e_0$: We proceed by a disjunction of cases of the form of the expression e_0 .

If $e_0 = \dot{n}$: The only rule applicable at the configuration (e, ρ) is:

$$\frac{}{(\dot{-}\dot{n},\rho)\to_{pp}(\dot{-}n,\rho)}(-_{\rm fin})$$

In effect, by progress, the configuration (e_0, ρ) cannot be reduced, which renders the rule (-) inapplicable. Therefore, $e_1 = e_2 = \hat{-n}$.

Otherwise, $\forall n, e_0 \neq \dot{n}$: The only rule applicable at the configuration (e, ρ) is (-), therefore, there exists e_1' and e_2' such that $e_1 = \dot{-}e_1'$, $e_2 = \dot{-}e_2'$, and so:

$$\frac{(e_0, \rho) \to_{pp} (e'_1, \rho)}{(\dot{-}e_0, \rho) \to_{pp} (\dot{-}e'_1, \rho)} (-)$$

and

$$\frac{(e_0, \rho) \to_{pp} (e'_2, \rho)}{(\dot{-}e_0, \rho) \to_{pp} (\dot{-}e'_2, \rho)} (-)$$

By the induction hypothesis on e_0 , $e'_1 = e'_2$ and consequently, $e_1 = e_2$.

Case $e = e_3 \dotplus e_4$: We proceed by a case disjunction over the forms of expressions e_3 and e_4 .

Case $e_3 = \dot{n}, e_4 = \dot{m}$: The only rule applicable at the configuration (e, ρ) is:

$$\frac{}{(\dot{n} \dotplus \dot{m}, \rho) \to_{pp} (\hat{n+m}, \rho)} (+_{fin})$$

In effect, by progress, the configurations (e_3, ρ) and (e_4, ρ) can't be reduced, which renders the rules $(+_{\ell})$ and $(+_r)$ inapplicable. Therefore, $e_1 = e_2 = \widehat{n+m}$.

Case $e_3 = \dot{n}$, $\forall m$, $e_4 \neq \dot{m}$: The only rule applicable at the configuration (e, ρ) is $(+_r)$, hence, there exists e_1' and e_2' such that $e_1 = \dot{n} \dotplus e_1'$, $e_2 = \dot{n} \dotplus e_2'$, and so:

$$\frac{(e_4, \rho) \to_{pp} (e'_1, \rho)}{(\dot{n} \dotplus e_4, \rho) \to_{pp} (\dot{n} \dotplus e'_1, \rho)} (+_r)$$

and

$$\frac{(e_4, \rho) \to_{pp} (e'_2, \rho)}{(\dot{n} \dotplus e_4, \rho) \to_{pp} (\dot{n} \dotplus e'_2, \rho)} (+_r)$$

In effect, by progress, the configuration (e_3, ρ) cannot be reduced, which renders the $(+_{\ell})$ rule inapplicable. By induction hypothesis on e_4 , $e'_1 = e'_2$. We can then deduce $e_1 = e_2$.

Case $\forall n, e_3 \neq \dot{n}$: The only rule applicable at the configuration (e, ρ) is $(+_{\ell})$, hence, there exists e'_1 and e'_2 such that $e_1 = e'_1 \dotplus e_4$, $e_2 = e'_2 \dotplus e_4$, and so:

$$\frac{(e_3, \rho) \to_{pp} (e'_1, \rho)}{(e_3 \dotplus e_4, \rho) \to_{pp} (e_3 \dotplus e_4, \rho)} (+_{\ell})$$

and

$$\frac{(e_3, \rho) \to_{pp} (e'_2, \rho)}{(e_3 \dotplus e_4, \rho) \to_{pp} (e_3 \dotplus e_4, \rho)} (+_{\ell})$$

By induction hypothesis on e_3 , $e'_1 = e'_2$. We deduce that $e_1 = e_2$. By the principle of induction, the reduction is deterministic.

4. (Correction) Let $n \in \mathbb{N}$, ρ be an environment, and e an expression. If $[\![e]\!]_{\rho} = n$, then there exists a derivation $(e, \rho) \to_{pp}^* (\dot{n}, \rho)$.

Proof Let ρ be an environment and e an expression. We proceed by structural induction on the expression e. Let us assume there exists an integer $n \in \mathbb{N}$ such that $[\![e]\!]_{\rho} = n$.

Base case $e = \dot{m}$: By definition of denotational semantics, $[\![e]\!]_{\rho} = m$, hence, n = m. Furthermore, $(e, \rho) \rightarrow_{pp}^{0} (\dot{m}, \rho) = (\dot{n}, \rho)$.

Base case e = x: By definition of denotational semantics, $\llbracket e \rrbracket_{\rho} = \rho(x)$, hence, $n = \rho(x)$. Furthermore, $(e, \rho) \to_{pp} (\widehat{\rho(x)}, \rho) = (\dot{n}, \rho)$ by the rule (Var).

Case $e = \dot{-}e_0$: We denote $m = [\![e_0]\!]_{\rho}$. By the definition of denotational semantics, $[\![e]\!]_{\rho} = -[\![e_0]\!]_{\rho} = -m$, hence n = -m. By the induction hypothesis on e_0 , we have that $(e_0, \rho) \to_{pp}^* (\dot{m}, \rho)$. We need an intermediate lemma here because we cannot use this sequence of reduction of arbitrary length in the derivation rules. We need to decompose this reduction into individual steps.

Lemma 1 If $(e_0, \rho) \to_{pp}^* (\dot{m}, \rho)$, then $(\dot{-}e_0, \rho) \to_{pp}^* (\dot{-}m, \rho)$.

Proof We proceed by induction on the size of the reduction.

- If $(e_0, \rho) \to_{pp}^0 (\dot{m}, \rho)$, then $e_0 = \dot{m}$. We have then that $(\dot{-}e_0, \rho) \to_{pp} (\dot{-m}, \rho) = (\dot{n}, \rho)$ by the rule $(-_{\text{fin}})$.
- If $(e_0, \rho) \to_{pp}^{k+1} (\dot{m}, \rho)$, then there exists e_1 such that $(e_0, \rho) \to_{pp} (e_1, \rho)$ and $(e_1, \rho) \to_{pp}^k (\dot{m}, \rho)$. By induction hypothesis, $(\dot{-}e_1, \rho) \to_{pp}^* (\dot{-m}, \rho)$. Furthermore,

$$\frac{(e_0, \rho) \to_{pp} (e_1, \rho)}{(\dot{-}e_0, \rho) \to_{pp} (\dot{-}e_1, \rho)} (-)$$

We conclude that $(\dot{-}e_0, \rho) \to_{pp}^* (\widehat{-m}, \rho)$.

By the lemma, $(e, \rho) \rightarrow_{pp}^* (\widehat{-m}, \rho) = (\dot{n}, \rho)$.

Case $e = e_1 \dotplus e_2$: We proceed by case disjunction on the forms of the expression e_1 .

Case $e_1 = \dot{m}_1$: We denote $m_2 = \llbracket e_2 \rrbracket_{\rho}$. By the definition of denotational semantics, $\llbracket e \rrbracket_{\rho} = \llbracket e_1 \rrbracket_{\rho} + \llbracket e_2 \rrbracket_{\rho} = m_1 + m_2$, so $n = m_1 + m_2$. By induction hypothesis on e_2 , we have that $(e_2, \rho) \to_{pp}^* (\dot{m}_2, \rho)$. Here, we need an intermediate lemma.

Lemma 2 If $(e_2, \rho) \to_{pp}^* (\dot{m}_2, \rho)$, then $(\dot{m}_1 \dotplus e_2, \rho) \to_{pp}^* (\dot{m_1 + m_2}, \rho)$. **Proof** We proceed by induction on the size of the reduction.

- If $(e_2, \rho) \rightarrow_{pp}^0 (\dot{m}_2, \rho)$, then $e_2 = \dot{m}_2$. We then have $(\dot{m}_1 + e_2, \rho) \rightarrow_{pp} (\dot{m}_1 + m_2, \rho) = (\dot{n}, \rho)$ by the rule $(+_{\text{fin}})$.
- If $(e_2, \rho) \to_{pp}^{k+1} (\dot{m}_2, \rho)$, then there exists e_3 such that $(e_2, \rho) \to_{pp} (e_3, \rho)$ and $(e_3, \rho) \to_{pp}^k (\dot{m}_2, \rho)$. By induction hypothesis, $(\dot{m}_1 \dotplus e_3, \rho) \to_{pp}^* (\widehat{m_1 + m_2}, \rho)$. Furthermore,

$$\frac{(e_2, \rho) \to_{pp} (e_3, \rho)}{(\dot{m}_1 \dotplus e_2, \rho) \to_{pp} (\dot{m}_1 \dotplus e_3, \rho)} (+_r)$$

We conclude that $(\dot{m}_1 \dotplus e_2, \rho) \rightarrow_{pp}^* (\widehat{m_1 + m_2}, \rho)$.

By the lemma, $(e, \rho) \rightarrow_{pp}^* (\widehat{m_1 + m_2}, \rho) = (\dot{n}, \rho)$.

Case $\forall n, e_1 \neq \dot{n}$: We denote $m_1 = \llbracket e_1 \rrbracket_{\rho}$ and $m_2 = \llbracket e_2 \rrbracket_{\rho}$. By the definition of denotational semantics, $\llbracket e \rrbracket_{\rho} = \llbracket e_1 \rrbracket_{\rho} + \llbracket e_2 \rrbracket_{\rho} = m_1 + m_2$, so $n = m_1 + m_2$. By the induction hypothesis on e_1 and e_2 , we have that $(e_1, \rho) \to_{pp}^* (\dot{m}_1, \rho)$ and $(e_2, \rho) \to_{pp}^* (\dot{m}_2, \rho)$. We once again need an intermediate lemma here.

Lemma 3 If $(e_1, \rho) \to_{pp}^* (\dot{m}_1, \rho)$ then $(e_1 \dotplus e_2, \rho) \to_{pp}^* (\dot{m}_1 \dotplus e_2, \rho)$.

Proof We proceed by induction on the size of the reduction.

- If $(e_1, \rho) \to_{pp}^0 (\dot{m}_1, \rho)$, then $e_1 = \dot{m}_1$. We then have that $(e_1 \dotplus e_2, \rho) \to_{pp}^0 (\dot{m}_1 \dotplus e_2, \rho)$.
- If $(e_1, \rho) \to_{pp}^{k+1} (\dot{m}_1, \rho)$, then there exists e_3 such that $(e_1, \rho) \to_{pp} (e_3, \rho)$ and $(e_3, \rho) \to_{pp}^k (\dot{m}_1, \rho)$. By induction hypothesis, $(e_3 \dotplus e_2, \rho) \to_{pp}^* (\dot{m}_1 \dotplus e_2, \rho)$. Furthermore,

$$\frac{(e_1, \rho) \to_{pp} (e_3, \rho)}{(e_1 \dotplus e_2, \rho) \to_{pp} (e_3 \dotplus e_2, \rho)} (+_{\ell})$$

We conclude that $(e_1 \dotplus e_2, \rho) \rightarrow_{pp}^* (\dot{m}_1 \dotplus e_2, \rho)$.

By the lemma, $(e, \rho) \xrightarrow{pp} (\dot{m}_1 + e_2, \rho)$. By the Lemma 2, we also have that $(\dot{m}_1 + e_2, \rho) \xrightarrow{pp} (\dot{m}_1 + m_2, \rho) = (\dot{n}, \rho)$. We conclude by concatenating both the sequences of the reduction.

By the principle of induction, the denotational semantics is correct.

5. (Adequacy) Let $n \in \mathbb{N}$, ρ be an environment, and e an expression. If there exists a derivation $(e, \rho) \to_{pp}^* (\dot{n}, \rho)$, then $[\![e]\!]_{\rho} = n$.

Proof We let ρ be an environment, and e an expression. We start by showing that the reduction \to_{pp} preserves the denotational semantics, i.e. for all steps $(e, \rho) \to_{pp} (e', \rho)$, $[\![e']\!]_{\rho} = [\![e]\!]_{\rho}$. We proceed by structural induction on the expression e.

Base case $e = \dot{m}$: The configuration (e, ρ) does not admit a successor - there is nothing to prove.

Base case e = x: We have $(e, \rho) \to_{pp} \widehat{(\rho(x)}, \rho) = (\dot{n}, \rho)$ by the rule (Var), and it is the only possible step by determinism. It is therefore sufficient to verify that this step preserves the denotational semantics. By definition of denotational semantics,

$$[\![e]\!]_{\rho} = \rho(x) = [\![\widehat{\rho(x)}]\!]_{\rho}.$$

Case $e = -e_0$: We proceed by a case disjunction on the form of the expression e_0 . If $e_0 = \dot{n}$, we have:

$$\frac{}{(\dot{-}\dot{n},\rho)\to_{pp}(\dot{\widehat{-n}},\rho)} (-_{fin})$$

It is the only step possible, by determinism. Furthermore, by the definition of denotational semantics, $[\![e]\!]_{\rho} = -[\![e_0]\!]_{\rho} = -n = [\![\hat{-n}]\!]_{\rho}$.

Otherwise, $\forall n, e_0 \neq \dot{n}$: By progress, there exists e_1 such that $(e_0, \rho) \rightarrow_{pp} (e_1, \rho)$. We have:

$$\frac{(e_0,\rho) \to_{pp} (e_1,\rho)}{(\dot{-}e_0,\rho) \to_{pp} (\dot{-}e_1,\rho)} (-)$$

Therefore, $(e, \rho) \to_{pp} (\dot{-}e_1, \rho)$, and by determinism it is the only step possible. By induction hypothesis on e_0 , $[\![e_0]\!]_{\rho} = [\![e_1]\!]_{\rho}$. Finally, by the definition of denotational semantics, $[\![e]\!]_{\rho} = -[\![e_0]\!]_{\rho} = -[\![e_1]\!]_{\rho} = [\![-\dot{e}_1]\!]_{\rho}$.

Case $e = e_1 + e_2$: We proceed by a disjunction of cases on the forms of the expressions e_1 and e_2 .

Case $e_1 = \dot{n}$ and $e_2 = \dot{m}$: We have the derivation:

$$\frac{1}{(\dot{n} \dotplus \dot{m}, \rho) \to_{pp} (\hat{n+m}, \rho)} (+_{fin})$$

By determinism, it is the only step possible. Moreover, by the definition of denotational semantics, $[\![e]\!]_{\rho} = [\![e_1]\!]_{\rho} + [\![e_2]\!]_{\rho} = n + m = [\![\widehat{n+m}]\!]_{\rho}$.

Case $e_1 = \dot{n}$ and $\forall m, e_2 \neq \dot{m}$: By progress, there exists e_3 such that $(e_2, \rho) \rightarrow_{pp} (e_3, \rho)$. We have the derivation:

$$\frac{(e_2, \rho) \to_{pp} (e_3, \rho)}{(\dot{n} \dotplus e_2, \rho) \to_{pp} (\dot{n} \dotplus e_3, \rho)} (+_r)$$

By determinism, it is the only step possible. By induction hypothesis, $[e_2]_{\rho} = [e_3]_{\rho}$. Finally, by the definition of denotational semantics, $[e]_{\rho} = [e_1]_{\rho} + [e_2]_{\rho} = n + [e_3]_{\rho} = [\dot{n} + e_3]_{\rho}$.

Case $\forall n, e_1 \neq \dot{n}$: By progress, there exists e_3 such that $(e_1, \rho) \rightarrow_{pp} (e_3, \rho)$. We have the derivation:

$$\frac{(e_1, \rho) \to_{pp} (e_3, \rho)}{(e_1 \dotplus e_2, \rho) \to_{pp} (e_3 \dotplus e_2, \rho)} (+_{\ell})$$

By determinism, it is the only step possible. By induction hypothesis, $[\![e_1]\!]_{\rho} = [\![e_3]\!]_{\rho}$. Finally, by the definition of denotational semantics, $[\![e]\!]_{\rho} = [\![e_1]\!]_{\rho} + [\![e_2]\!]_{\rho} = [\![e_3]\!]_{\rho} + [\![e_2]\!]_{\rho} = [\![e_3]\!]_{\rho} + [\![e_2]\!]_{\rho}$.

By principle of induction, the reduction \to_{pp} preserves denotational semantics. We deduce the adequacy by induction over the length of the derivation $(e, \rho) \to_{pp}^* (\dot{n}, \rho)$.

- If $(e, \rho) \rightarrow_{pp}^{0} (\dot{n}, \rho)$, $e = \dot{n}$ and $\llbracket e \rrbracket_{\rho} = n$.
- If $(e, \rho) \to_{pp}^{k+1} (\dot{n}, \rho)$, there exists an expression e' such that $(e, \rho) \to_{pp} (e', \rho)$ and $(e', \rho) \to_{pp}^k (\dot{n}, \rho)$. By induction hypothesis, $[\![e']\!]_{\rho} = n$. The reduction \to_{pp} preserves denotation semantics, $[\![e]\!]_{\rho} = [\![e']\!]_{\rho}$. We deduce that $[\![e]\!]_{\rho} = n$.

By the principle of induction, the denotational semantics is adequate.