Programmation 1

TD n°7

3 novembre 2020

Exercise 1:

1. Give a proof of
(@ 4+ (Fy) +2,plz = 3,y 2]) =7, (3, plz = 3,y = 2])

. State then prove the progress theorem (théoréme de progres)
. State then prove the determinism theorem (théoréme de déterminisme)

. Show the correctness of denotational semantics

Tt o= W N

. Show the adequacy of denotational semantics

Solution:

1. We give a derivation tree in small steps, noting p’ = p[z — 3,y — 2] :

o0 = Gip) )

(x4 (<), 0) =pp B+ (<9),0) (+)
((z+ (<y) +2,0) =pp (B4 (<v) +2,0)

(+¢)

e . e~ ..

TT8.7) o Grg)
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We obtain the derivation :
((z+ (<)) + 2, plz = 3,y — 2]) =7, 3, plz — 3,y — 2))

2. (Progress) The only configurations which do not have a successor by the relation
—pp are configurations of the form (n, p).
Proof Let p be an environment. We proceed by structural induction over the
expression e.
Base case e = 1 : The configuration (e, p) does not have a successor.
Base case e = x : We have the derivation :

(Var)

(@, p) =pp (p(2), )
Therefore, we have a derivation (e, p) —pp (p/(\aﬁ),p) and the configuration (e, p)
admits a successor.
Case e = —¢( : We proceed by a disjunction of cases over the form of the expression
€Q.
If eg = n : We have the derivation

(_ﬁn)

(;T‘% 10) _>pp (:;% 10)

Hence, the configuration (e, p) admits a successor.
If not, Vn, ey # n : By the induction hypothesis, the configuration (eg, p)
admits a successor for —,,. Let it be (e, p). We have the derivation :

(607 P) —pp (66, ,0)
(_607p) _>pp (_667p)

(=)

Therefore, the configuration (e, p) admits a successor.
Case ¢ = e; + ez : We proceed by a disjunction of cases over the form of the
expressions el and es.

Case e; = n and es = m. We have the derivation :

(+ﬁn)

(n + 11, p) —pp (R +m, p)

Therefore, the configuration (e, p) admits a successor.
Case e; = n and Vm, es # 1 : By induction hypothesis, the configuration
(e2, p) admits a successor for —,,. We denote it as (e, p). We have the derivation :

(€2, ) =pp (€2, P)
(7 + €2, p) —=pp (1 + €3, p)

(+r)

Therefore, the configuration (e, p) admits a successor.
Case Vn, e; # n : By induction hypothesis, the configuration (e, p) admits a
successor for —,,. Let us denote it by (€}, p). We have the derivation :

(61,[)) —pp (ellvp)
(61 + 627P) _>pp (6/1 + e?)ﬂ)

(++¢)

Therefore, the configuration (e, p) admits a successor.
By the principle of induction, the only configurations that do not admit a successor
for —,,, are the configurations (n, p).
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3. (Determinism) The reduction —py, is deterministic, i.e. for all e, ey, ez, p, if (€, p) —pp
(e1,p) and (e, p) —=pp (e2,p), then e; = €.
Proof Let p be an environment. We proceed by structural induction on the ex-
pression e. We assume that there exists e; and ey such that (e, p) =, (e1, p) and
(6, p) —pp (€2> ,0)-
Base case e = n : There does not exist any derivation rule for the configuration
(e, p), hence, it has no successor : It holds vacuously.
Base case e = x : The only rule that is applicable at the configuration (e, p) is :

— (Var)
(. p) —=pp (p(), p)
Therefore, e; = e = /@
Case e = —¢p : We proceed by a disjunction of cases of the form of the expression
€Q.
If ey = n : The only rule applicable at the configuration (e, p) is :
. BN (—fin)
(=7, p) =pp (=1, p)
In effect, by progress, the configuration (eg, p) cannot be reduced, which ren-
ders the rule (—) inapplicable. Therefore, e; = €3 = —n.
Otherwise, Vn, eg # n : The only rule applicable at the configuration (e, p)
is (—), therefore, there exists €] and e} such that e; = —e}, ea = —eb, and so :

(607 p) _>pp (6/17 p)
(—€0,p) —pp (—€1,p)

(-)
and

(607 P) _>pp (6/2, P)
(—e0, p) —pp (—€5,p)

(=)

By the induction hypothesis on ey, €} = €}, and consequently, e; = es.
Case e = e3 + e4 : We proceed by a case disjunction over the forms of expressions
ez and ey.

Case e3 = n, eq = m : The only rule applicable at the configuration (e, p) is :

(+ﬁn)

/.\

(1 411, p) =pp (14 m, p)

In effect, by progress, the configurations (es, p) and (eq, p) can’t be reduced,

which renders the rules (+) and (+,) inapplicable. Therefore, e; = e = n + m.

Case e3 = n, Ym, eq # m : : The only rule applicable at the configuration
(e,p) is (+), hence, there exists €] and e} such that e; = 1+ ¢}, e2 = 1+ €, and
SO :

(e4,p) —pp (€1,p)
(12 + €, p) —pp (0 + €1, p)

(+r)

and
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(647p) —pp (6/27p)
(7 + €4, p) —pp (0 + €5, p)

(+r)

In effect, by progress, the configuration (es, p) cannot be reduced, which ren-
ders the (+/) rule inapplicable. By induction hypothesis on ey, €] = €,. We can
then deduce e; = es.

Case Vn, e3 # n : The only rule applicable at the configuration (e, p) is (+¢),
hence, there exists €} and €, such that e; = €| + e4, ez = €}, + €4, and so :

(e3,p) —rpp (€1, )
(63 + e4ap) —7pp (63 + 64710)

(+e)

and

(63, p) _>PP (6/27 P)
(e3 + eq,p) —pp (€3 + eq, p)

(+e)

By induction hypothesis on es, ¢} = €. We deduce that e; = es.
By the principle of induction, the reduction is deterministic.

4. (Correction) Let n € N, p be an environment, and e an expression. If [e], = n,
then there exists a derivation (e, p) =, (1, p).
Proof Let p be an environment and e an expression. We proceed by structural
induction on the expression e. Let us assume there exists an integer n € N such
that [e], = n.
Base case e = i : By definition of denotational semantics, [e], = m, hence,
n = m. Furthermore, (e, p) —>gp (m, p) = (n,p).

Base case e = x : By definition of denotational semantics, [e], = p(x), hence,

n = p(x). Furthermore, (e, p) —pp (p/(\x), p) = (n,p) by the rule (Var).
Case e = —¢j : We denote m = [eg],. By the definition of denotational semantics,
le]l, = —[eo], = —m, hence n = —m. By the induction hypothesis on eg, we have
that (eo, p) =, (1, p). We need an intermediate lemma here because we cannot
use this sequence of reduction of arbitrary length in the derivation rules. We need
to decompose this reduction into individual steps.
Lemma 1 If (eg, p) =7, (1, p), then (e, p) =%, (=m, p).
Proof We proceed by induction on the size of the reduction.

—

— If (eg, p) =9, (1, p), then ey = 1n. We have then that (—eq, p) —pp (—m, p) =
(n, p) by the rule (—gy).

— 1If (ep, p) —>]1§;;1 (m, p), then there exists ey such that (e, p) —pp (e1,p) and
(e1,p) —>];p (11, p). By induction hypothesis, (—e1,p) =5, (=m, p). Further-
more,

(€0, p) —pp (€1,p)
(_eoap) —>pp (—elvp)

We conclude that (—eq, p) =7, (=m, p).
By the lemma, (e, p) =7, (=m, p) = (i1, p).
Case e = e1 + ez : We proceed by case disjunction on the forms of the expression
el.




L3 ENS Paris-Saclay Programmation 1

Case e; = 11 : We denote mg = [e2],. By the definition of denotational seman-
tics, [e], = [e1], + [e2], = m1 + ma2, so n = m1 + ma. By induction hypothesis on
e2, we have that (ez, p) —, (112, p). Here, we need an intermediate lemma.

Lemma 2 If (e, p) =7, (12, p), then (1 4 e2,p) =, (m71 + ma, p).
Proof We proceed by induction on the size of the reduction.

— If (e, p) =3, (g, p), then ey = rhy. We then have (1 +ea, p) —pp (my1 + ma, p)
= (n, p) by the rule (+£y).
— If (e2, p) —>]1§;1 (mhg, p), then there exists ez such that (ez, p) —pp (€3, p) and

(e3,p) =k, (1h2, p). By induction hypothesis, (riy + es, p) =7, (m1 + ma, p).

Furthermore,
(e2,p) —pp (e3,p) (++)
(ml +e27p> _>Pp (m1+e37p) '
We conclude that (11 + ez, p) =7, (m1 + ma, p).

By the lemma, (e, p) —, (m1 + ma, p) = (7, p).

Case Vn, e; # n : We denote m; = [e1], and mo = [e2],. By the definition
of denotational semantics, [e], = [e1], + [e2], = m1 + ma, so n = mq + ma.
By the induction hypothesis on e; and ez, we have that (e1,p) —, (111, p) and
(e2,p) =, (12, p). We once again need an intermediate lemma here.

Lemma 3 If (e1, p) =5, (171, p) then (e1 + ez, p) =7, (111 + €2, p).

Proof We proceed by induction on the size of the reduction.

— 1If (e, p) —>2p (11, p), then e; = ;. We then have that (e; + ea,p) —9

pp
(1h1 + ez, p).
— 1If (e1, p) %];;1 (r1, p), then there exists e3 such that (e1, p) —pp (€3, p) and
(e3,p) —>’;p (11, p). By induction hypothesis, (e3 + e2, p) =5, (111 + €2, p).
Furthermore,

(elap) —pp (637p)
(61 + 6271)) —>pp (63 + 62710)

(+e)

We conclude that (e1 + ea, p) =7, (111 + e2, p).

By the lemma, (e,p) —5, (11 + eg,p). By the Lemma 2, we also have that

(1 + e2,p) =5, (m1 +ma, p) = (1, p). We conclude by concatenating both the
sequences of the reduction.
By the principle of induction, the denotational semantics is correct.

5. (Adequacy) Let n € N, p be an environment, and e an expression. If there exists a
derivation (e, p) =, (1, p), then [e], = n.
Proof We let p be an environment, and e an expression. We start by showing that
the reduction —, preserves the denotational semantics, i.e. for all steps (e, p) —pp
(¢, p), [¢'], = [€]p- We proceed by structural induction on the expression e.
Base case e = m : The configuration (e, p) does not admit a successor - there is
nothing to prove.

Base case e = x : We have (e, p) =, (p/(;),p) = (n, p) by the rule (Var), and it
is the only possible step by determinism. It is therefore sufficient to verify that this
step preserves the denotational semantics. By definition of denotational semantics,

—

[elp = p(z) = [p(2)],
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Case e = —¢g : We proceed by a case disjunction on the form of the expression eg.
If ey = n, we have :

. = (—fin)
(_n7 P) —pp (_n7 P)
It is the only step possible, by determinism. Furthermore, by the definition of
denotational semantics, [e], = —[eo], = —n = [~n],.

Otherwise, Vn, ey # n : By progress, there exists e; such that (eg, p) —pp (€1, p).
We have :

(€0, p) —pp (€1,p)
(—€0,p) —pp (—e1,p)

Therefore, (e, p) —pp (—€1, p), and by determinism it is the only step possible. By
induction hypothesis on eq, [eg], = [e1],. Finally, by the definition of denotational
semantics, [e], = —[eo], = —[e1l, = [—e1],-

Case e = e; + ey : We proceed by a disjunction of cases on the forms of the
expressions e and es.

Case e¢; = n and eg = m : We have the derivation :

(+ﬁn)

(n 4 1m, p) =pp (R +m, p)
By determinism, it is the only step possible. Moreover, by the definition of de-
notational semantics, [e], = [e1], + [e2], = n +m = [n + m],.

Case e; = n and Vm, ez # 1 : By progress, there exists e3 such that (ez, p) —pp
(es, p). We have the derivation :

(e2,p) —pp (€3,p)
(h + €2, P) —pp (n + €3, P)

(+r)

By determinism, it is the only step possible. By induction hypothesis, [e2], =
les],- Finally, by the definition of denotational semantics, [e], = [e1], + [e2], =
n+ [es], = [ + es],.

Case Vn, e; # n : By progress, there exists eg such that (e, p) —pp (e3,p). We
have the derivation :

(e1,p) —pp (€3,p)
(e1 + 62,P) —pp (e3 - e2,p)

(+e)

By determinism, it is the only step possible. By induction hypothesis, [e1], =
les],- Finally, by the definition of denotational semantics, [e], = [e1], + [ez2], =
[es], + [e2lp = [es + e2],.

By principle of induction, the reduction —,, preserves denotational semantics. We
deduce the adequacy by induction over the length of the derivation (e, p) —7, (1, p).

— 1If (e, p) —>2p (n,p), e =n and [e], = n.
— 1If (e, p) —>];;1 (n, p), there exists an expression e’ such that (e, p) —p (€, p)

and (¢/, p) =& (7, p). By induction hypothesis, [¢'], = n. The reduction —,
preserves denotation semantics, [e], = [€'],. We deduce that [e], = n.

By the principle of induction, the denotational semantics is adequate.




