
Programmation 1

TD n◦7

3 novembre 2020

Exercise 1 :

1. Give a proof of

((x +̇ (−̇y)) +̇ 2̇, ρ[x 7→ 3, y 7→ 2])→∗pp (3̇, ρ[x 7→ 3, y 7→ 2])

2. State then prove the progress theorem (théorème de progrès)
3. State then prove the determinism theorem (théorème de déterminisme)
4. Show the correctness of denotational semantics
5. Show the adequacy of denotational semantics

Solution:

1. We give a derivation tree in small steps, noting ρ′ = ρ[x 7→ 3, y 7→ 2] :

(x, ρ)→pp (3̇, ρ)
(Var)

(x +̇ (−̇y), ρ′)→pp (3̇ +̇ (−̇y), ρ′)
(+`)

((x +̇ (−̇y)) +̇ 2̇, ρ′)→pp ((3̇ +̇ (−̇y)) +̇ 2̇, ρ′)
(+`)

(y, ρ′)→pp (2̇, ρ
′)

(Var)

(−̇y, ρ)→pp (−̇2̇, ρ)
(−)

(3̇ +̇ (−̇y), ρ′)→pp (3̇ +̇ (−̇2̇), ρ′)
(+r)

((3̇ +̇ (−̇y)) +̇ 2̇, ρ′)→pp ((3̇ +̇ (−̇2̇)) +̇ 2̇, ρ′)
(+`)

(−̇2̇, ρ)→pp (
˙̂−2, ρ)

(−fin)

(3̇ +̇ (−̇2̇), ρ′)→pp (3̇ +̇ (
˙̂−2), ρ′)

(+r)

((3̇ +̇ (−̇2̇)), +̇2̇, ρ′)→pp ((3̇ +̇ (
˙̂−2)) +̇ 2̇, ρ′)

(+`)

(3̇ +̇
˙̂−2, ρ′)→pp (1̇, ρ

′)
(+fin)

((3̇ +̇
˙̂−2) +̇ 2̇, ρ′)→pp (1̇ +̇ 2̇, ρ′)

(+`)

(1̇ +̇ 2̇, ρ′)→pp (3̇, ρ
′)

(+fin)

1

L3 ENS Paris-Saclay Programmation 1

We obtain the derivation :

((x +̇ (−̇y)) +̇ 2̇, ρ[x 7→ 3, y 7→ 2])→∗pp (3̇, ρ[x 7→ 3, y 7→ 2])

2. (Progress) The only configurations which do not have a successor by the relation
→pp are configurations of the form (ṅ, ρ).
Proof Let ρ be an environment. We proceed by structural induction over the
expression e.
Base case e = ṅ : The configuration (e, ρ) does not have a successor.
Base case e = x : We have the derivation :

(x, ρ)→pp (
˙̂

ρ(x), ρ)
(Var)

Therefore, we have a derivation (e, ρ) →pp (
˙̂

ρ(x), ρ) and the configuration (e, ρ)
admits a successor.
Case e = −̇e0 : We proceed by a disjunction of cases over the form of the expression
e0.

If e0 = ṅ : We have the derivation

(−̇ṅ, ρ)→pp (
˙̂−n, ρ)

(−fin)

Hence, the configuration (e, ρ) admits a successor.
If not, ∀n, e0 6= ṅ : By the induction hypothesis, the configuration (e0, ρ)

admits a successor for →pp. Let it be (e′0, ρ). We have the derivation :

(e0, ρ)→pp (e
′
0, ρ)

(−̇e0, ρ)→pp (−̇e′0, ρ)
(−)

Therefore, the configuration (e, ρ) admits a successor.
Case e = e1 +̇ e2 : We proceed by a disjunction of cases over the form of the
expressions e1 and e2.

Case e1 = ṅ and e2 = ṁ. We have the derivation :

(ṅ +̇ ṁ, ρ)→pp (
˙̂

n+m, ρ)
(+fin)

Therefore, the configuration (e, ρ) admits a successor.
Case e1 = ṅ and ∀m, e2 6= ṁ : By induction hypothesis, the configuration

(e2, ρ) admits a successor for→pp. We denote it as (e′2, ρ). We have the derivation :

(e2, ρ)→pp (e
′
2, ρ)

(ṅ +̇ e2, ρ)→pp (ṅ +̇ e′2, ρ)
(+r)

Therefore, the configuration (e, ρ) admits a successor.
Case ∀n, e1 6= ṅ : By induction hypothesis, the configuration (e1, ρ) admits a

successor for →pp. Let us denote it by (e′1, ρ). We have the derivation :

(e1, ρ)→pp (e
′
1, ρ)

(e1 +̇ e2, ρ)→pp (e
′
1 +̇ e2, ρ)

(+`)

Therefore, the configuration (e, ρ) admits a successor.
By the principle of induction, the only configurations that do not admit a successor
for →pp are the configurations (ṅ, ρ).

2

L3 ENS Paris-Saclay Programmation 1

3. (Determinism) The reduction→pp is deterministic, i.e. for all e, e1, e2, ρ, if (e, ρ)→pp

(e1, ρ) and (e, ρ)→pp (e2, ρ), then e1 = e2.
Proof Let ρ be an environment. We proceed by structural induction on the ex-
pression e. We assume that there exists e1 and e2 such that (e, ρ)→pp (e1, ρ) and
(e, ρ)→pp (e2, ρ).
Base case e = ṅ : There does not exist any derivation rule for the configuration
(e, ρ), hence, it has no successor : It holds vacuously.
Base case e = x : The only rule that is applicable at the configuration (e, ρ) is :

(x, ρ)→pp (
˙̂

ρ(x), ρ)
(Var)

Therefore, e1 = e2 =
˙̂

ρ(x).
Case e = −̇e0 : We proceed by a disjunction of cases of the form of the expression
e0.

If e0 = ṅ : The only rule applicable at the configuration (e, ρ) is :

(−̇ṅ, ρ)→pp (
˙̂−n, ρ)

(−fin)

In effect, by progress, the configuration (e0, ρ) cannot be reduced, which ren-
ders the rule (−) inapplicable. Therefore, e1 = e2 =

˙̂−n.
Otherwise, ∀n, e0 6= ṅ : The only rule applicable at the configuration (e, ρ)

is (−), therefore, there exists e′1 and e′2 such that e1 = −̇e′1, e2 = −̇e′2, and so :

(e0, ρ)→pp (e
′
1, ρ)

(−̇e0, ρ)→pp (−̇e′1, ρ)
(−)

and

(e0, ρ)→pp (e
′
2, ρ)

(−̇e0, ρ)→pp (−̇e′2, ρ)
(−)

By the induction hypothesis on e0, e′1 = e′2 and consequently, e1 = e2.
Case e = e3 +̇ e4 : We proceed by a case disjunction over the forms of expressions
e3 and e4.

Case e3 = ṅ, e4 = ṁ : The only rule applicable at the configuration (e, ρ) is :

(ṅ +̇ ṁ, ρ)→pp (
˙̂

n+m, ρ)
(+fin)

In effect, by progress, the configurations (e3, ρ) and (e4, ρ) can’t be reduced,
which renders the rules (+`) and (+r) inapplicable. Therefore, e1 = e2 =

˙̂
n+m.

Case e3 = ṅ, ∀m, e4 6= ṁ : : The only rule applicable at the configuration
(e, ρ) is (+r), hence, there exists e′1 and e′2 such that e1 = ṅ +̇ e′1, e2 = ṅ +̇ e′2, and
so :

(e4, ρ)→pp (e
′
1, ρ)

(ṅ +̇ e4, ρ)→pp (ṅ +̇ e′1, ρ)
(+r)

and

3

L3 ENS Paris-Saclay Programmation 1

(e4, ρ)→pp (e
′
2, ρ)

(ṅ +̇ e4, ρ)→pp (ṅ +̇ e′2, ρ)
(+r)

In effect, by progress, the configuration (e3, ρ) cannot be reduced, which ren-
ders the (+`) rule inapplicable. By induction hypothesis on e4, e′1 = e′2. We can
then deduce e1 = e2.

Case ∀n, e3 6= ṅ : The only rule applicable at the configuration (e, ρ) is (+`),
hence, there exists e′1 and e′2 such that e1 = e′1 +̇ e4, e2 = e′2 +̇ e4, and so :

(e3, ρ)→pp (e
′
1, ρ)

(e3 +̇ e4, ρ)→pp (e3 +̇ e4, ρ)
(+`)

and

(e3, ρ)→pp (e
′
2, ρ)

(e3 +̇ e4, ρ)→pp (e3 +̇ e4, ρ)
(+`)

By induction hypothesis on e3, e′1 = e′2. We deduce that e1 = e2.
By the principle of induction, the reduction is deterministic.

4. (Correction) Let n ∈ N, ρ be an environment, and e an expression. If JeKρ = n,
then there exists a derivation (e, ρ)→∗pp (ṅ, ρ).
Proof Let ρ be an environment and e an expression. We proceed by structural
induction on the expression e. Let us assume there exists an integer n ∈ N such
that JeKρ = n.
Base case e = ṁ : By definition of denotational semantics, JeKρ = m, hence,
n = m. Furthermore, (e, ρ)→0

pp (ṁ, ρ) = (ṅ, ρ).
Base case e = x : By definition of denotational semantics, JeKρ = ρ(x), hence,

n = ρ(x). Furthermore, (e, ρ)→pp (
˙̂

ρ(x), ρ) = (ṅ, ρ) by the rule (Var).
Case e = −̇e0 : We denote m = Je0Kρ. By the definition of denotational semantics,
JeKρ = −Je0Kρ = −m, hence n = −m. By the induction hypothesis on e0, we have
that (e0, ρ) →∗pp (ṁ, ρ). We need an intermediate lemma here because we cannot
use this sequence of reduction of arbitrary length in the derivation rules. We need
to decompose this reduction into individual steps.

Lemma 1 If (e0, ρ)→∗pp (ṁ, ρ), then (−̇e0, ρ)→∗pp (
˙̂−m, ρ).

Proof We proceed by induction on the size of the reduction.

— If (e0, ρ)→0
pp (ṁ, ρ), then e0 = ṁ. We have then that (−̇e0, ρ)→pp (

˙̂−m, ρ) =
(ṅ, ρ) by the rule (−fin).

— If (e0, ρ) →k+1
pp (ṁ, ρ), then there exists e1 such that (e0, ρ) →pp (e1, ρ) and

(e1, ρ) →k
pp (ṁ, ρ). By induction hypothesis, (−̇e1, ρ) →∗pp (˙̂−m, ρ). Further-

more,

(e0, ρ)→pp (e1, ρ)

(−̇e0, ρ)→pp (−̇e1, ρ)
(−)

We conclude that (−̇e0, ρ)→∗pp (
˙̂−m, ρ).

By the lemma, (e, ρ)→∗pp (
˙̂−m, ρ) = (ṅ, ρ).

Case e = e1 +̇ e2 : We proceed by case disjunction on the forms of the expression
e1.

4

L3 ENS Paris-Saclay Programmation 1

Case e1 = ṁ1 : We denote m2 = Je2Kρ. By the definition of denotational seman-
tics, JeKρ = Je1Kρ+ Je2Kρ = m1 +m2, so n = m1 +m2. By induction hypothesis on
e2, we have that (e2, ρ)→∗pp (ṁ2, ρ). Here, we need an intermediate lemma.

Lemma 2 If (e2, ρ)→∗pp (ṁ2, ρ), then (ṁ1 +̇ e2, ρ)→∗pp (
˙̂

m1 +m2, ρ).
Proof We proceed by induction on the size of the reduction.

— If (e2, ρ)→0
pp (ṁ2, ρ), then e2 = ṁ2. We then have (ṁ1+̇e2, ρ)→pp (

˙̂
m1 +m2, ρ)

= (ṅ, ρ) by the rule (+fin).
— If (e2, ρ) →k+1

pp (ṁ2, ρ), then there exists e3 such that (e2, ρ) →pp (e3, ρ) and

(e3, ρ)→k
pp (ṁ2, ρ). By induction hypothesis, (ṁ1 +̇ e3, ρ)→∗pp (

˙̂
m1 +m2, ρ).

Furthermore,

(e2, ρ)→pp (e3, ρ)

(ṁ1 +̇ e2, ρ)→pp (ṁ1 +̇ e3, ρ)
(+r)

We conclude that (ṁ1 +̇ e2, ρ)→∗pp (
˙̂

m1 +m2, ρ).

By the lemma, (e, ρ)→∗pp (
˙̂

m1 +m2, ρ) = (ṅ, ρ).
Case ∀n, e1 6= ṅ : We denote m1 = Je1Kρ and m2 = Je2Kρ. By the definition

of denotational semantics, JeKρ = Je1Kρ + Je2Kρ = m1 + m2, so n = m1 + m2.
By the induction hypothesis on e1 and e2, we have that (e1, ρ) →∗pp (ṁ1, ρ) and
(e2, ρ)→∗pp (ṁ2, ρ). We once again need an intermediate lemma here.

Lemma 3 If (e1, ρ)→∗pp (ṁ1, ρ) then (e1 +̇ e2, ρ)→∗pp (ṁ1 +̇ e2, ρ).
Proof We proceed by induction on the size of the reduction.

— If (e1, ρ) →0
pp (ṁ1, ρ), then e1 = ṁ1. We then have that (e1 +̇ e2, ρ) →0

pp

(ṁ1 +̇ e2, ρ).
— If (e1, ρ) →k+1

pp (ṁ1, ρ), then there exists e3 such that (e1, ρ) →pp (e3, ρ) and
(e3, ρ) →k

pp (ṁ1, ρ). By induction hypothesis, (e3 +̇ e2, ρ) →∗pp (ṁ1 +̇ e2, ρ).
Furthermore,

(e1, ρ)→pp (e3, ρ)

(e1 +̇ e2, ρ)→pp (e3 +̇ e2, ρ)
(+`)

We conclude that (e1 +̇ e2, ρ)→∗pp (ṁ1 +̇ e2, ρ).
By the lemma, (e, ρ) →∗pp (ṁ1 +̇ e2, ρ). By the Lemma 2, we also have that

(ṁ1 +̇ e2, ρ) →∗pp (
˙̂

m1 +m2, ρ) = (ṅ, ρ). We conclude by concatenating both the
sequences of the reduction.
By the principle of induction, the denotational semantics is correct.

5. (Adequacy) Let n ∈ N, ρ be an environment, and e an expression. If there exists a
derivation (e, ρ)→∗pp (ṅ, ρ), then JeKρ = n.
Proof We let ρ be an environment, and e an expression. We start by showing that
the reduction→pp preserves the denotational semantics, i.e. for all steps (e, ρ)→pp

(e′, ρ), Je′Kρ = JeKρ. We proceed by structural induction on the expression e.
Base case e = ṁ : The configuration (e, ρ) does not admit a successor - there is
nothing to prove.

Base case e = x : We have (e, ρ) →pp (
˙̂

ρ(x), ρ) = (ṅ, ρ) by the rule (Var), and it
is the only possible step by determinism. It is therefore sufficient to verify that this
step preserves the denotational semantics. By definition of denotational semantics,

JeKρ = ρ(x) = J
˙̂

ρ(x)Kρ.

5

L3 ENS Paris-Saclay Programmation 1

Case e = −̇e0 : We proceed by a case disjunction on the form of the expression e0.
If e0 = ṅ, we have :

(−̇ṅ, ρ)→pp (
˙̂−n, ρ)

(−fin)

It is the only step possible, by determinism. Furthermore, by the definition of
denotational semantics, JeKρ = −Je0Kρ = −n = J ˙̂−nKρ.

Otherwise, ∀n, e0 6= ṅ : By progress, there exists e1 such that (e0, ρ)→pp (e1, ρ).
We have :

(e0, ρ)→pp (e1, ρ)

(−̇e0, ρ)→pp (−̇e1, ρ)
(−)

Therefore, (e, ρ)→pp (−̇e1, ρ), and by determinism it is the only step possible. By
induction hypothesis on e0, Je0Kρ = Je1Kρ. Finally, by the definition of denotational
semantics, JeKρ = −Je0Kρ = −Je1Kρ = J ˙−e1Kρ.
Case e = e1 +̇ e2 : We proceed by a disjunction of cases on the forms of the
expressions e1 and e2.

Case e1 = ṅ and e2 = ṁ : We have the derivation :

(ṅ +̇ ṁ, ρ)→pp (
˙̂

n+m, ρ)
(+fin)

By determinism, it is the only step possible. Moreover, by the definition of de-
notational semantics, JeKρ = Je1Kρ + Je2Kρ = n+m = J ˙̂

n+mKρ.
Case e1 = ṅ and ∀m, e2 6= ṁ : By progress, there exists e3 such that (e2, ρ)→pp

(e3, ρ). We have the derivation :

(e2, ρ)→pp (e3, ρ)

(ṅ +̇ e2, ρ)→pp (ṅ +̇ e3, ρ)
(+r)

By determinism, it is the only step possible. By induction hypothesis, Je2Kρ =
Je3Kρ. Finally, by the definition of denotational semantics, JeKρ = Je1Kρ + Je2Kρ =
n+ Je3Kρ = Jṅ +̇ e3Kρ.

Case ∀n, e1 6= ṅ : By progress, there exists e3 such that (e1, ρ)→pp (e3, ρ). We
have the derivation :

(e1, ρ)→pp (e3, ρ)

(e1 +̇ e2, ρ)→pp (e3 +̇ e2, ρ)
(+`)

By determinism, it is the only step possible. By induction hypothesis, Je1Kρ =
Je3Kρ. Finally, by the definition of denotational semantics, JeKρ = Je1Kρ + Je2Kρ =
Je3Kρ + Je2Kρ = Je3 +̇ e2Kρ.
By principle of induction, the reduction→pp preserves denotational semantics. We
deduce the adequacy by induction over the length of the derivation (e, ρ)→∗pp (ṅ, ρ).

— If (e, ρ)→0
pp (ṅ, ρ), e = ṅ and JeKρ = n.

— If (e, ρ) →k+1
pp (ṅ, ρ), there exists an expression e′ such that (e, ρ) →pp (e

′, ρ)

and (e′, ρ)→k
pp (ṅ, ρ). By induction hypothesis, Je′Kρ = n. The reduction→pp

preserves denotation semantics, JeKρ = Je′Kρ. We deduce that JeKρ = n.

By the principle of induction, the denotational semantics is adequate.

6

