Programmation 1

TD n°14

5 janvier 2021

1 Rule of Sign

Let us revisit the rule of sign example from the lecture. We will define an abstract in-
terpretation of a language of integer expressions including only literals, addition, and
multiplication. The goal of the abstract interpretation will be to determine whether each
(sub)-expression is negative, zero, or positive.

Syntax. Expressions involve literals, addition, and multiplication.

exp —n (literals)
— exp + exp (addition)
— exp * exp (multiplication)

Standard Interpretation. We define the standard interpretation of expressions using deno-
tational semantics; i.e., we add the definitions of the valuation functions below.

E: Exp — Int

E[n] =n
E[El + E2] = E[E1] + E[E2]
E[E1 * E2] = E[E1] * E[E2]

We define the abstract domain, called Sign, as follows. We want the abstract interpretation
to tell us whether an expression is negative, zero, or positive. Note that we cannot always
know the sign (for example, a negative plus a positive), hence, we define a "don’t-know"
value called num.

Sign = { zero, pos, neg, num }
We define the valuation functions for the abstract interpretation in terms of the two tables
below, which define abstract addition and multiplication operations.
Here are the abstract valuation functions; note that the abstract meaning of an integer
expression is a Sign.

E.ps : Exp — Sign

Eaps[n] = if n < 0 then neg else if n = 0 then zero else pos
Eabs[E1 + E2] = Eabs[E1] © Eaps[£2]
Eaps[F1 * E2] = Eaps[F1] @ Eans[E2]

L3 ENS Paris-Saclay Programmation 1

S neg zero pos hum
neg neg neg num num
Zero neg zero pos num
pPos num pos pos num
num num num num - num

& neg zero pos num
neg pos zero neg num
Zero zero Zero Zero Zzero
pos neg zero pos num
num num Zzero num num

A Galois connection is a pair of functions, o and v between two partially ordered sets
(C,C) and (A, <), such that both of the following hold.

— VYae€AceC:alc)<aiff c C~v(a)
— VYae€ A:a(y(a) <a

Exercise 1:

1. Apply the abstract interpretation to the expression Eaps[—22 * (14 + 7)].

1. Define two partially-ordered sets (posets) C and A. The elements of C are all
non-empty sets of values from the concrete domain. The elements of A are the
values from the abstract domain.

2. Define an abstraction function « that maps non-empty sets of concrete values
to abstract values (i.e., a is of type C' — A).

3. Define a concretization function ~ that maps abstract values to non-empty
sets of concrete values (i.e., v is of type A — ().

4. Show that « and ~ form a Galois connection.

5. For each possible form of expression exp, show that

{Elexp]} € 7(Eabs[exp])

where C is the ordering of poset C, i.e., the subset ordering.

Exercise 2:
For the above example, we now show that the abstract semantics is consistent with the
standard semantics. For this, we follow the steps enumerated above.

1. Define the abstraction and the concretization functions.

2. Consider the entire set A and the following elements of the set C: {1, 2}, {0}, {—1, -2},
{0,1}, {—1}, {1}, {0}, set of all negative integers, set of all positive integers, and the
set of all integers. Draw the a and v mappings between these elements.

3. Show that « and v form a Galois connection.

4. Finally, prove that for every exp,
{E[exp]} € v(Eabs[exp])

5. In what way does proving the above inclusion show that the rule-of-sign abstract inter-
pretation is consistent with the standard semantics ?

L3 ENS Paris-Saclay Programmation 1

2 Standard and Collecting Semantics for CFGs

For more realistic static-analysis problems, however, the standard denotational semantics
is usually not a good place to start. This is because we usually want the results of static
analysis to tell us what holds at each point in the program, and program points are usually
defined to be the nodes of the program’s control-flow graph (CFG).

For example, for constant propagation (process of substituting the values of known constants
in expressions at compile time) we want to know, for each CFG node, which variables are
guaranteed to have constant values when execution reaches that node. Therefore, it is better
to start with a (standard) semantics defined in terms of a CFG.

. +
| 1: start |
- +
|
v
S ——— +
| 2: a=1|
R — +
|
v
- +
| 3: b = 1 |
S ——— +
|
v
R — - + X +
+-—=> | 4: a < 3 |--==>| 6: ¢ = atb |---->| 7: exit |
| S —— + R — + R —— +
| |
| T |
| v
| R +
| | 5: a = a+b |
| S +
| |
| |
R — +

FIGURE 1 — Example CFG

The most straightforward is to define an operational semantics; think of it as an
interpreter whose input is the entry node of a CFG plus an initial state (a mapping
from variables to values), and whose output is the program’s final state. We’ll define
the standard sementics in terms of transfer functions, one for each CFG node. These
are (semantic) functions whose inputs are states and whose outputs are pairs that
include both an output state and the CFG node that is the appropriate successor. A
node’s transfer function captures the execution semantics of that node and specifies
the next node to be executed.

Consider the CFG given in the diagram.

For this example, the transfer function for node 2 would be defined as follows :

As.(s[a < 1],3)

where s[a < 1] means "a new state that is the same as s except that it maps variable
ato1."

L3 ENS Paris-Saclay Programmation 1
Exercise 3:

1. What is the transfer function for the node 47

Here is a (recursive) definition of the interpreter (the operational semantics). We use
fn to mean the transfer function defined for CFG node n.

interp = As.An. if isExitNode(n) then s

else let (s',n') = f,(s) in interp s'n’

Because this definition is recursive, we need to use the usual trick of abstracting on
the function and defining the operational semantics as the least fixed point of that
abstraction :

semantics = fix(AF.As.An. if isExitNode(n) then s
else let (s',n') = f.(s) in F s'n’)

While the operational semantics discussed above is defined in terms of the program’s
CFG, it has two properties that are undesirable as the basis for an abstract interpre-
tation :

1. It is still just a function from a program’s input state to its final state ; the result
of applying the operational semantics tells us nothing about the intermediate
states that arise at each CFG node.

2. It maps a particular initial state to the corresponding final state. We want a
semantics that tells us what can happen for every possible initial state.

To obtain a guarantee about the relationship between the program’s semantics and
the analysis results, we need a semantics that includes information about the set of
states that can arise at each CFG node given any possible initial state. That kind of
semantics is called a collecting semantics.

We will define a collecting semantics that maps CFG nodes to sets of states; i.e., for
each CFG node n, the collecting semantics tells us what states can arise just before n is
executed. The "approximate semantics" that we define using abstract interpretation
will compute, for each CFG node, (a finite representation of) a superset of the set
of states computed for that node by the collecting semantics. By showing that our
abstract interpretation really does compute a superset of the possible states that can
arise at each CFG node, we show that it is consistent with the program’s actual
semantics.

Because the collecting semantics involves sets of states, we need to define transfer
functions whose inputs and outputs are sets of states. We’ll define one function f,, — m
for each CFG edge n — m. That transfer function will be defined in terms of the
(original) transfer function f,, defined for the CFG node n :

Jnosm =AS{s' | s€ S and f,(s) = (s',m)}

For example, the transfer function for edge2 — 3 of the example CFG given above
would be defined as follows :

ASAsla+ 1] | s € S}

Exercise 4:

L3 ENS Paris-Saclay Programmation 1

1. What is the transfer function (for the collecting semantics) for edge 4 — 5 of the
example CFG?

2. The collecting semantics will be of type CFG-node — set-of-states. It defines the set of
states that holds just before node n to be the union of the sets of states produced by
applying the transfer functions of all of n’s in-edges to the sets of states that hold just
before the sources of those in-edges execute. Write the non-recursive definition for it, if
the recursive definition is given below.

recColl = An. if isEnterNode(n) then { all states }
else let P = preds(n) in Up € P f,,(recColl(p))

To define an abstract interpretation we need to do the following :

1. Define the abstract domain A, the abstraction function «, and the concretization
function ~.

2. Show that « and « form a Galois connection.
3. For each CFG edge n — m, define an abstract transfer function f#,_m.

4. Show that the abstract transfer functions are consistent with the concrete ones ;
i.e., for each abstract f# and corresponding concrete f :
(a) start with an arbitrary concrete-domain item ¢

(b) let ¢ = f(c)
(c) let a = a(c)
(d) let a’ = f#(a)

(e) let " =~(a)

(f) show that ¢ C ¢’
Given an abstract interpretation, we can define the abstract semantics recursively or
non-recursively, as we did for the collecting semantics. The definitions given below
define the abstract semantics as a mapping CFG-node — abstract state. The abstract
state that holds at CFG node n (a safe approximation to the set of concrete states that
hold just before n executes) is the join of the abstract states produced by applying

the abstract transfer functions of all of node n’s incoming CFG edges to the abstract
states that hold before those edges’ source nodes.

recAbs = An. if isEnterNode(n) then «({all states})
else let P = preds(n) in
Upep [#p—n(recAbs(p))

And here’s the non-recursive definition :

abs = fix(AF.\n. if isEnterNode(n) then a({ all states })
else let P = preds(n) in

Upep f#p%n(F(P)))

Exercise 5:
We now adapt it to the example of constant propagation. The elements of the abstract domain
A are abstract states that map variables to values, including the special value ? (which means
that the corresponding set of concrete states includes states that map the variable to different
values). The abstract domain also includes a special bottom element L. The ordering of the
abstract domain is based on the underlying flat ordering of individual values in which 7 is

L3 ENS Paris-Saclay Programmation 1

the top element, and all other values are incomparable. Given two abstract states, a; and
az, a1 < ag iff

— a1 is L, or
— every variable x mapped to a non-? value in as is mapped to the same value in a;.

The concrete domain is the one defined earlier, whose elements are sets of states (each with
a value for every variable), and whose ordering is subset (i.e., S; C So iff S7 is a subset of

S3).
1. What are the abstraction and concretization functions ?
2. Show that they form a Galois connection.

3. Define the abstract transfer functions.

	Rule of Sign
	Standard and Collecting Semantics for CFGs

