Programmation 1

TD n°12

8 décembre 2020

1 Real PCF~

We give below the denotational and operational semantics for Real PCF~.
The types are as follows :
O,T,... = unit
| I
| o =71

S={L, T} with L < T.Z=][0,1] with the usual order.

[unit] =S [Tl =7 [o — 7] = [[o] = [7]]-

[z-]p = p(ar)
[uv]p = [ulp([v]p)
[fn z5.ulp = (V € [o] = [ul(plzs = V]))
[letrec z, =u in v]p = [v](p[zs — [rec z, = u]p])
[rec x5 =u]p = Up(V € [o] — [u](p[zs — V]))

[0.u]lp = addy([u]p) [1.u]p = addi([u]p)
[tioup = remo([u]p) [ti1u]p = remi([u]p)
if w then v else w:T[p = [v]p if fulp =T
[Pt hen v etse wirly {[[v]]pA [ulp. it o= L
oo = {7
[«]p =T,

where V € X — f(V) denotes the function which to all V' in X associates f(V'), and where :

addy(a) = a/2 addy(a) = (a+1)/2

remg(a) = min(2a,1) remi(a) = max(2a — 1,0)

L3 ENS Paris-Saclay

Programmation 1

Contexts (type constraints omitted) :

C

| Cu

| t10C

| t10C

| t1,C

|C>1/2

|C>0

| pif C then v else w
| pif uw then C else w
| pif w then v else C

Operational semantics. We only apply a rule under a context C of the above form, i.e., u — v
if and only if u = C[¢] and v = C[r], where C is a context (the types being respected), and £ — r

is one of the rules below.

(fn zy.u)v

letrec z, =u in v
ti,(a.u)

t1p(l.u)

t11(0.u)

(Lu) > 1/2

(Lu) >0

(0.u) >0

pif x then v else w
pif u then v else x
pif w then 0.v else l.w

pif v then a.v else a.w

Exercise 1:

Recall that for all w : 7,[u] is a well-defined function, Scott-continuous from Enwv

Hmavariable[[a]] to [[T]]

A

ul[z, =]
v[z, := letrec T, =u in u]

(a € {0,1})

0.v
a.(pif u then v else w) (a €{0,1})

def

1. Show that the construction u > 0 of Real PCF™ is redundant. Explicitly propose a

definition of an expression Real PCF~ nonzero, of type I — unit, which does not use
the expression of the form u > 0, and whose semantics [nonzero]p is the function to
which 0 associates | and to all a € Z non-zero associates T. Prove this assertion.

. Show that the rule tagged with («) of the operational semantics is correct, in the sense
that [pif u then v else x]p = [v]p for all p € Env.

. We consider a Real PCF™ program of the form letrec x, =u in v, of type unit .
Show that if [letrec z, = u in]p # L,then there is an integer n € N such that

[letrec z, =u in [p = g(f™(L)),

where we use the abbreviations g(V) = [v](plzs — V]) and f(V) = [u](p[zs — V]).
(The L in argument of f" is that of [o].) This expresses that a recursive definition
(of) used in a terminating computation (v) of type unit will be "expanded" only n
times .

L3 ENS Paris-Saclay Programmation 1

4. Why does the argument from the previous question not work if letrec z, = v in v
is of type I7

5. Recall that 0 def letrec x1 = 0.z7 in x1. Show that there does not exist a derivation
in the operational semantics for

t1o(pif 0 > 1/2 then 1.0 else 0.1.1.0) > 1/2 —* x.
We can set Z def letrec 1 = 0.x7 in O.z71.

6. What can we conclude for the adequacy of the type unit 7 Justify.

7. Any suggestions to complete the operational semantics ?

Solution:
1.

rec nonzero = fn ms.
pif m > 1/2 then x

else nonzero(tlom)

Its semantics is the smallest fixed point of the function F' which to ¢ € [Z — S]
associates the function which to a € 7 associates T if a > 1/2, ¢(max(2a,1)) =
©(2a) otherwise. (The A is trivial here.)

The iterations of Kleene are ¢g = L, then ¢; which associates T exactly with
a > 1/2, then ¢o which associates T exactly with a such that a > 1/2 or 2a > 1/2
(i.e. a>1/4).

By induction on n, we see that ¢, associates T exactly with a > 1/2. In effect,
¢n+1 sends all @ > 1/2 to T, and all aleql/2 to ¢,(2a), that is to say to T if
2a > 1/2" (i.e., a > 1/2"*1) and to L otherwise.

The smallest fixed point therefore always sends 0 to L, but any number a > 0 to
T since there is an n € N from which a > 1/2".

2. If Julp > 1/2, the left side is [v]p Otherwise, it is worth [v]p A [*]p = [v]p since
[¥]p = T is the largest element of S (and everything happens in S given the typing
constraints).

3. By definition, [letrec z, = u in v]p = g(lfpf). Using Kleene’s formula, and the
Scott-continuity of g, this is sup, cng(f™(L)). The depo [u] =S is flat, so this sup
is reached for a certain n. Note that we must use the Scott-continuity of g. There
is no n € N such that fn (L) = lfpf in general, as the next question shows.

4. T does not have the ascending string property. For example, the definition of 1
produces such an infinite growing chain.

5. Expressions 1.0 and 0.1.1.0 are in normal form because 1. and 0. are not
contexts. In fact, we can only start by rewriting 0 > 1/2 in Z > 1/2, then in
0.Z > 1/2, which gives tlo(pif 0.Z > 1/2 then 1.0 else 0.1.1.0) > 1/2. But
there is no longer any rule applicable to this expression.

6. It fails. Indeed, for any environment p, such as [0.Z > 1/2]p = addy(0) = 0,

[t1o(pif 0.Z > 1/2 then 1.0 else 0.1.1.0)]p = remgo([1.0]p A [0.1.1.0]p)
= remo(addy (0) A addo(add: (addy(0))))
= remo(1/2 A 3/8) = remy(3/8) = 3/4

So [t1o(pif 0.Z > 1/2 then 1.0 else 0.1.1.0) > 1/2]p = * , but we come to see
that the operational semantics does not progress far enough to reach .

L3 ENS Paris-Saclay Programmation 1

7. We can already add the rules :

t1,(pif w then v else w) — pif u then tl,v else tl,w
(pif w then v else w) > 1/2 — pif u then v >1/2 else w > 1/2
(pif u then v else w) >0 — pif w then v >0 else w >0

for a € {0,1}. The third form is not essential for the example, but we can see
that it will be necessary in general. We could also think of adding rules like
(pif u then v else w)t — pif u then vt else wt, but this is not necessary,
because with the adequation of type unit , the functions play little role.

Exercise 2:
We now assume that a same Real PCF™ variable is always labeled with the same type : if
we see T, and x,, then ¢ = 7. This amounts to saying that the name x of the variables is
sufficient to distinguish them.
We consider the Real PCF~~ language, which is just Real PCF~ but without any type index.
For example, fn x.u and letrec z = u in v are the expressions Real PCF ™~ corresponding

to fn x,.u and letrec x, = u in v, respectively.
def

Formally, let E denote the type erasure function, defined by E(letrec z, = u in v) =
letrec x = E(u) in E(v), E(fn z,.u) L fn x.E(u), etc.
We will say that a Real PCF~™~ expression w is typable, of type 7, if and only if there exists
a Real PCF~ expression «’, of type 7, such that F(u) = u.

1. Are all Real PCF~~ expressions typable 7 Justify.

2. Is the type of a Real PCF~~ typable expression unique ? Justify.

Solution:
1. No, for example, zz is not, neither is + 0.

2. No, for example, fn x.x has all types 0 — o.

