
Programmation 1

TD n◦12

8 décembre 2020

1 Real PCF−

We give below the denotational and operational semantics for Real PCF−.
The types are as follows :

σ, τ, . . . ::= unit

| I

| σ → τ

S = {⊥,>} with ⊥ < >. I = [0, 1] with the usual order.

JunitK = S JIK = I Jσ → τK = [JσK→ JτK].

Jxτ Kρ = ρ(xτ )

JuvKρ = JuKρ(JvKρ)
Jfn xσ.uKρ = (V ∈ JσK 7→ JuK(ρ[xσ 7→ V ]))

Jletrec xσ = u in vKρ = JvK(ρ[xσ 7→ Jrec xσ = uKρ])
Jrec xσ = uKρ = lfp(V ∈ JσK 7→ JuK(ρ[xσ 7→ V ]))

J0.uKρ = add0(JuKρ) J1.uKρ = add1(JuKρ)
Jt10uKρ = rem0(JuKρ) Jt11uKρ = rem1(JuKρ)

Jpif u then v else w : τKρ =

{
JvKρ, if JuKρ = >
JvKρ ∧ JwKρ, if JuKρ = ⊥

Ju > 1/2Kρ =

{
>, if JuKρ > 1/2

⊥, otherwise
Ju > 0Kρ =

{
>, if JuKρ > 0

⊥, otherwise

J∗Kρ = >,

where V ∈ X 7→ f(V ) denotes the function which to all V in X associates f(V ), and where :

add0(a) = a/2 add1(a) = (a+ 1)/2

rem0(a) = min(2a, 1) rem1(a) = max(2a− 1, 0)

1



L3 ENS Paris-Saclay Programmation 1

Contexts (type constraints omitted) :

C ::= _
| Cv
| t10C
| t10C
| t11C
| C > 1/2

| C > 0

| pif C then v else w

| pif u then C else w

| pif u then v else C

Operational semantics. We only apply a rule under a context C of the above form, i.e., u→ v
if and only if u = C[`] and v = C[r], where C is a context (the types being respected), and `→ r
is one of the rules below.

(fn xσ.u)v → u[xσ := v]

letrec xσ = u in v → v[xσ := letrec xσ = u in u]

t1a(a.u) → u (a ∈ {0, 1})
t10(1.u) → 1̇

t11(0.u) → 0̇

(1.u) > 1/2 → u > 0

(1.u) > 0 → ∗
(0.u) > 0 → u > 0

pif ∗ then v else w → v

pif u then v else ∗ → v (α)
pif u then 0.v else 1.w → 0.v

pif u then a.v else a.w → a.(pif u then v else w) (a ∈ {0, 1})

Exercise 1 :
Recall that for all u : τ, JuK is a well-defined function, Scott-continuous from Env

def
=∏

xσvariableJσK to JτK.

1. Show that the construction u > 0 of Real PCF− is redundant. Explicitly propose a
definition of an expression Real PCF− nonzero, of type I→ unit, which does not use
the expression of the form u > 0, and whose semantics JnonzeroKρ is the function to
which 0 associates ⊥ and to all a ∈ I non-zero associates >. Prove this assertion.

2. Show that the rule tagged with (α) of the operational semantics is correct, in the sense
that Jpif u then v else ∗Kρ = JvKρ for all ρ ∈ Env.

3. We consider a Real PCF− program of the form letrec xσ = u in v, of type unit .
Show that if Jletrec xσ = u in Kρ 6= ⊥,then there is an integer n ∈ N such that

Jletrec xσ = u in Kρ = g(fn(⊥)),

where we use the abbreviations g(V ) = JvK(ρ[xσ 7→ V ]) and f(V ) = JuK(ρ[xσ 7→ V ]).
(The ⊥ in argument of fn is that of JσK.) This expresses that a recursive definition
(of xσ) used in a terminating computation (v) of type unit will be "expanded" only n
times .

2



L3 ENS Paris-Saclay Programmation 1

4. Why does the argument from the previous question not work if letrec xσ = u in v
is of type I ?

5. Recall that 0̇ def
= letrec xI = 0.xI in xI. Show that there does not exist a derivation

in the operational semantics for

t10(pif 0̇ > 1/2 then 1.0̇ else 0.1.1.0̇) > 1/2→∗ ∗.

We can set Z def
= letrec xI = 0.xI in 0.xI.

6. What can we conclude for the adequacy of the type unit ? Justify.

7. Any suggestions to complete the operational semantics ?

Exercise 2 :
We now assume that a same Real PCF− variable is always labeled with the same type : if
we see xσ and xτ , then σ = τ . This amounts to saying that the name x of the variables is
sufficient to distinguish them.
We consider the Real PCF−− language, which is just Real PCF− but without any type index.
For example, fn x.u and letrec x = u in v are the expressions Real PCF−− corresponding
to fn xσ.u and letrec xσ = u in v, respectively.

Formally, let E denote the type erasure function, defined by E(letrec xσ = u in v)
def
=

letrec x = E(u) in E(v), E(fn xσ.u)
def
= fn x.E(u), etc.

We will say that a Real PCF−− expression u is typable, of type τ , if and only if there exists
a Real PCF− expression u′, of type τ , such that E(u) = u.

1. Are all Real PCF−− expressions typable ? Justify.

2. Is the type of a Real PCF−− typable expression unique ? Justify.

3


