Programmation 1

TD n°11

1" décembre 2020

Exercise 1:
Consider the following PCF expression u

letrec £ (x) = 3 in
letrec g (x) = g (x) in
f (g 0)

1. This is not a valid expression because the type annotations are missing. Add them.

2. Calculate the denotational semantics of w.

Solution:
1. letrec fint—int (Tint) = 3 in
letrec Fint—int (-Tint) = Jint—int (xint) in
fint—)int (gint—>int O)
2. Using the rule

W)

[[letrec fO’—}T(w0'> =wu in Uﬂp - [[U]](p[fa—m— =]fp(Fp

fosr,%o,
where FJ’CJJHT,%M(@) = (V€ [o] = [u](plfosr = ¢, 25 — V])).

We obtain that [u]p = 3 for all environments p.

Exercise 2:
For each OCaml expression below, give the type of the expression, if it exists. Justify.

1. let f x = x in (f 3, f "trois")
2. (fun £ -> (f 3, f "trois")) (fun x -> x)
3. 1let £ x = x in let g = ref f in (!g 3, !g "trois")

Solution:

1. The type is int * string .
2. This does not type, because the generalization only applies to 1et thus the function
fun x -> x is not generalized.
3. We trigger the "value restriction". It is important because otherwise we can do
things like
let r = (fun x -> ref x) [1;;
r:=[11;;
let cond = (!r = ["foo" 1);;

L3 ENS Paris-Saclay Programmation 1

Exercise 3:
We consider the following language

M:=z|X:7TM|MN|letz:7=Min N | ff | tt | if M then N else P

1. Propose an adapted typing system.
2. Give a derivation of - (Az : bool.if = then ff else x)tt : bool

3. Which element of the programming language syntax is crucial to guarantee typing
determinism ? Explain with an example.

4. Show that the let is encoded using the other constructs in a well-typed way.
5. Propose small-step semantics for this language.
6. Show that there is a theorem of subject reduction, that is, small-step semantics preserves
typing.
7. We add to the syntax the following two constructions
try M with N | abort

Propose an extension of the typing system.

8. Propose an extension of the small step semantics.

Solution:
L. "TFtt: bool I'+ff: bool z:7hx:7
I'-M:o—>1 I'EN:o 'z:ob-M:T
I'MN:7 'X:0M:0—>71

I'F P : bool I'EM:Tr I'EN:T
I'Hif P then M else N : 1

I'EM:o I'z:ocb-N:7T
I'Flet =M in N : 7
2. It can be shown using the rules above.

3. The fact that the types are in the syntax. That is, type inference is not determi-
nistic, the type erasure loses information. For example, Ax.x.

4. We write let z =M in N 2 (\z.N)M.

(A : T.M)N — M[N/x]

let x:7=M in N — N[M/x]
if tt then M else N — M

if ff then M else N - N

and M — N implies C[M] — C[N] for all contexts C.
6. This is done by induction on the typing derivation.

7. We give to Abort the type exn and

r-M:r I'-EN:T1
I'ktry M with N : 71

8. We add the rules

try abort with M — M
try V with M -V

and the following context
try C with M

L3 ENS Paris-Saclay Programmation 1

Exercise 4 :
We add exceptional constructors that we denote as C,...,C),. These are for example ex-
ceptions like KeyboardInterrupt. For each Cj, we consider a type 7; of fixed argument and
we add the rules of deductions

Ci;: 1 — exn
1. Adapt the syntax. What are the values? What are the contexts?
2. Adapt the small-step semantics.

3. Use it to reduce the next term assuming that M —* V.

try (Az.\y.y)(abort M) with Ci(z) — x

4. OCaml language prohibits building exceptions possessing a polymorphic type. Explain.

Solution:

1. Values are closed terms of the form Az.f, tt ou ff. Exceptions are not considered
as values since they will be executed in a context. The contexts are :

C:=C|try C with M | abort C' | VC | CM | if C then M else M

2. Small-step semantics adapts as follows

try (abort (C;V)) with C;(z) — N — N[z/M]
Flabort V] — abort V
try V with M -V

3. Trivially reduces to V.

4. Tt is sufficient to imagine the type 7; £ Va.a.
So we lose subject reduction as shown by the following term :

try abort (C;(tt));1 with Cj(z) — z+1

