
Programmation 1

TD n◦11

1er décembre 2020

Exercise 1 :
Consider the following PCF expression u

letrec f (x) = 3 in
letrec g (x) = g (x) in
f (g 0)

1. This is not a valid expression because the type annotations are missing. Add them.
2. Calculate the denotational semantics of u.

Solution:

1. letrec fint→int (xint) = 3̇ in

letrec gint→int (xint) = gint 7→int (xint) in

fint→int (gint→int 0̇)

2. Using the rule

Jletrec fσ→τ (xσ) = u in vKρ = JvK(ρ[fσ→τ 7→ lfp(F ρfσ→τ ,xσ ,u
)])

where F ρfσ→τ ,xσ ,u
(ϕ) = (V ∈ JσK 7→ JuK(ρ[fσ→τ 7→ ϕ, xσ 7→ V])).

We obtain that JuKρ = 3 for all environments ρ.

Exercise 2 :
For each OCaml expression below, give the type of the expression, if it exists. Justify.
1. let f x = x in (f 3, f "trois")

2. (fun f -> (f 3, f "trois")) (fun x -> x)

3. let f x = x in let g = ref f in (!g 3, !g "trois")

Solution:

1. The type is int * string .

2. This does not type, because the generalization only applies to let thus the function
fun x -> x is not generalized.

3. We trigger the "value restriction". It is important because otherwise we can do
things like

let r = (fun x -> ref x) [];;
r := [1];;
let cond = (!r = ["foo"]);;

1

L3 ENS Paris-Saclay Programmation 1

Exercise 3 :
We consider the following language

M := x | λx : τ.M | MN | let x : τ = M in N | ff | tt | if M then N else P

1. Propose an adapted typing system.
2. Give a derivation of ` (λx : bool.if x then ff else x)tt : bool

3. Which element of the programming language syntax is crucial to guarantee typing
determinism ? Explain with an example.

4. Show that the let is encoded using the other constructs in a well-typed way.
5. Propose small-step semantics for this language.
6. Show that there is a theorem of subject reduction, that is, small-step semantics preserves

typing.
7. We add to the syntax the following two constructions

try M with N | abort

Propose an extension of the typing system.
8. Propose an extension of the small step semantics.

Solution:

1. Γ ` tt : bool Γ ` ff : bool Γ, x : τ ` x : τ

Γ `M : σ → τ Γ ` N : σ
Γ `MN : τ

Γ, x : σ `M : τ

Γ ` λx : σ.M : σ → τ

Γ ` P : bool Γ `M : τ Γ ` N : τ
Γ ` if P then M else N : τ

Γ `M : σ Γ, x : σ ` N : τ

Γ ` let x = M in N : τ

2. It can be shown using the rules above.
3. The fact that the types are in the syntax. That is, type inference is not determi-

nistic, the type erasure loses information. For example, λx.x.
4. We write let x = M in N , (λx.N)M .
5.

(λx : τ.M)N →M [N/x]

let x : τ = M in N → N [M/x]

if tt then M else N →M

if ff then M else N → N

and M → N implies C[M]→ C[N] for all contexts C.
6. This is done by induction on the typing derivation.
7. We give to Abort the type exn and

Γ `M : τ Γ ` N : τ
Γ ` try M with N : τ

8. We add the rules

try abort with M →M

try V with M → V

and the following context
try C with M

2

L3 ENS Paris-Saclay Programmation 1

Exercise 4 :
We add exceptional constructors that we denote as C1, . . . , Cn. These are for example ex-
ceptions like KeyboardInterrupt. For each Ci, we consider a type τi of fixed argument and
we add the rules of deductions

Ci : τi → exn

1. Adapt the syntax. What are the values ? What are the contexts ?

2. Adapt the small-step semantics.

3. Use it to reduce the next term assuming that M →∗ V .

try (λx.λy.y)(abort M) with Ci(x) 7→ x

4. OCaml language prohibits building exceptions possessing a polymorphic type. Explain.

Solution:

1. Values are closed terms of the form λx.f , tt ou ff. Exceptions are not considered
as values since they will be executed in a context. The contexts are :

C := C | try C with M | abort C | V C | CM | if C then M else M

2. Small-step semantics adapts as follows

try (abort (CiV)) with Ci(x) 7→ N → N [x/M]

F [abort V]→ abort V
try V with M → V

3. Trivially reduces to V .

4. It is sufficient to imagine the type τi , ∀α.α.
So we lose subject reduction as shown by the following term :

try abort (Ci(tt)); 1 with Ci(x) 7→ x+ 1

3

