
Programmation 1

TD n◦11

1er décembre 2020

Exercise 1 :
Consider the following PCF expression u

letrec f (x) = 3 in
letrec g (x) = g (x) in
f (g 0)

1. This is not a valid expression because the type annotations are missing. Add them.
2. Calculate the denotational semantics of u.

Exercise 2 :
For each OCaml expression below, give the type of the expression, if it exists. Justify.
1. let f x = x in (f 3, f "trois")

2. (fun f -> (f 3, f "trois")) (fun x -> x)

3. let f x = x in let g = ref f in (!g 3, !g "trois")

Exercise 3 :
We consider the following language

M := x | λx : τ.M | MN | let x : τ =M in N | ff | tt | if M then N else P

1. Propose an adapted typing system.
2. Give a derivation of ` (λx.if x then ff else x)tt : bool

3. Which element of the programming language syntax is crucial to guarantee typing
determinism ? Explain with an example.

4. Show that the let is encoded using the other constructs in a well-typed way.
5. Propose small-step semantics for this language.
6. Show that there is a theorem of subject reduction, that is, small-step semantics preserves

typing.
7. We add to the syntax the following two constructions

try M with N | abort

Propose an extension of the typing system.
8. Propose an extension of the small step semantics.

Exercise 4 :
We add exceptional constructors that we denote as C1, . . . , Cn. These are for example ex-
ceptions like KeyboardInterrupt. For each Ci, we consider a type τi of fixed argument and
we add the rules of deductions

Ci : τi → exn

1

L3 ENS Paris-Saclay Programmation 1

1. Adapt the syntax. What are the values ? What are the contexts ?

2. Adapt the small-step semantics.

3. Use it to reduce the next term assuming that M →∗ V .

try (λx.λy.y)(abort M) with Ci(x) 7→ x

4. OCaml language prohibits building exceptions possessing a polymorphic type. Explain.

2

