
Programmation 1

TD n◦10

25 novembre 2020

1 Semantics and verification

Imp

On donne une version de Imp possédant non seulement des expressions arithmétiques,
mais aussi des expressions booléennes.

e := x | 0 | 1 | e+ e | − e | e× e
b := (e ∼ e) | e ≤ e | ¬b | b ∧ b
c := skip | while b do c | x := e | if b then c else c

Formules arithmétiques au premier ordre

Voici la construction des formules au premier ordre que nous autoriserons, leur ensemble
est noté FO[0, 1,+,×,≤]. Dans la suite i est une variable logique à valeur entière.

t := x | 0 | 1 | t+ t | − t | t× t | i
φ := (t ∼ t) | t ≤ t | ¬φ | φ ∧ φ | ∃i.φ

Exercise 1 : Warmup

1. Give denotational semantics for Boolean expressions.

2. Give semantics for logical formulae. We write ρ |=I φ when the formula φ is valid in the
environment ρ for the program variables and I for the logical variables.

3. Notice that the syntax of Boolean expressions of Imp is a subset of the syntax of the
formulas. Do the two semantics then coincide ? Show that for all I, ρ |=I b ⇐⇒ JbKρ 6=
0.

4. Show that we can assume that x < y is a valid boolean expression.

Solution:

1. BJtrueKσ = true
BJfalseKσ = false
BJa0 ∼ a1Kσ = (AJa0Kσ = AJa1Kσ)
BJa0 ≤ a1Kσ = (AJa0Kσ ≤ AJa1Kσ)
BJ¬bKσ = ¬BJbKσ
BJb0 ∧ b1Kσ = BJb0Kσ ∧ BJb1Kσ

1

L3 ENS Paris-Saclay Programmation 1

2.

ρ |= t1 ∼ t2 if Jt1Kρ ∼ Jt2Kρ ;

ρ |= ¬ϕ if ρ 6|= ϕ ;

ρ |= φ ∧ ψ if ρ |= ϕ and ρ |= ψ ;

ρ |= ∃i.ϕ if ρ |= ϕ[i := n] for some n.

3. We can use straightforward structural induction for each instance to show equiva-
lence.

4. A simple structural induction shows that each denotation is a function. For example,

BJa0 < a1Kσ =

{
true if AJa0Kσ < AJa1Kσ
false if AJa1Kσ ≤ AJa0Kσ

for all σ ∈ Σ.

Triplets de Hoare

On appelle triplet de Hoare {φ} c {ψ}. On dit que ce triplet est valide sous I, ce qui
est noté |=I {φ} c {ψ} quand

∀ρ, ρ |=I φ ∧ JcKρ 6= ⊥ =⇒ JcKρ |=I ψ

Une autre manière de présenter cela est d’étendre la sémantique des formules en posant
⊥ |=I φ quelque soit la formule φ et l’environnement σ.
On notera |= {φ} c {ψ} quand pour tout I on a |=I {φ} c {ψ}.

Axiomatique de Hoare

On donne des règles de Hoare pour toutes les constructions excepté le while.

{φ} skip {φ}

{φ[x := e]} x := e {φ}

{φ ∧ b} c1 {ψ} {φ ∧ ¬b} c2 {ψ}
{φ} if b then c1 else c2 {ψ}

φ =⇒ φ′ {φ′} c {ψ′} ψ′ =⇒ ψ

{φ} c {ψ}

Exercise 2 : Hoare on a toy language

1. Show that for all ρ, I, for all terms u, v and variable x

ρ |=I φ[x 7→ u] ⇐⇒ ρ[x 7→ JuKρ] |=I φ

2. Show that every Hoare triple is valid. In other words, show that the system is correct.

3. Suggest a rule for the while condition. Show that it is correct.

4. With the help of the axiomatic system, prove the following triple

{x ∼ 0 ∧ y ∼ 0 ∧ z ∼ 0 ∧ n ≥ 0} w {x ∼ n3}

where

w , while z < 3n do z := z + 3; y := y + 2z − 3;x := x+ y − z + 1

2

L3 ENS Paris-Saclay Programmation 1

Solution:

1. Once again, we can use structural induction on φ in order to show this.

2. This is proved by induction on the derivation tree of the considered triple. Thus,
for each rule, assuming that the triples in premises are valid, we need to show that
the triple in conclusion is valid too. The proofs are straightforward for the all the
rules given in the table. (The sequence rule is omitted in the table - that is the only
non-trivial case apart from the while condition given below. Send me an email if
you want the proof for that !)

3. We show the following is the rule for the while-condition.

{A ∧ b} c {A}
{A} while b do c {A ∧ ¬b}

Note : The assertion A is called the invariant because the premise, that {A ∧
b} c {A} is valid, says that the assertion A is preserved by a full execution of
the body of the loop, and in a while loop such executions only take place from
states satisfying b. From a state satisfying A either the execution of the while-loop
diverges or a finite number of executions of the body are performed, each beginning
in a state satisfying b. In the latter case, as A is an invariant the final state satisfies
A and also ¬b on exiting the loop.
Proof. Let us assume that the premise {A ∧ b} c {A} is valid. To show that
{A} while b do c {A ∧ ¬b} is valid, let’s consider some state Σ such that JIKΣ

holds and some execution Σ,while b do c ∗ Σ′, skip.
We proceed by induction on the number of steps of this execution. We have two
cases depending on whether the condition JbKΣ is 0 or not. If it is 0 then the
execution terminates in a single step, and Σ′ = Σ, hence, JA ∧ ¬bKΣ′ holds.
If the condition is not 0, then the execution has the form Σ,while b do c
Σ, (c; while b do c) ∗ Σ′, skip.
Since the sequence is terminating, we know that there is a state Σ′′ such that
Σ, c Σ′′ and Σ′′,while b do c ∗ Σ′, skip. Since JA∧bKΣ holds and {A∧b} c {A}
is valid, JAKΣ′′ holds.
By induction, since Σ′′,while b do c ∗ Σ′, skip has fewer steps than the original
execution, we get that JA ∧ ¬bKΣ′ holds. Hence, it is valid.

4. We have, {x = 0 ∧ y = 0 ∧ z = 0 ∧ n ≥ 0} while z < 3n do z := z + 3; y :=
y + 2z − 3;x := x+ y − z + 1{x = n3}.

We write the while statement as while b do c for simplicity where b is z < 3n and
c is z := z + 3; y := y + 2z − 3;x := x+ y − z + 1.
The first step is to identify the invariant, which is as follows :

I ≡ 27x = z3 ∧ 3y = z2 ∧ z ≤ 3n

In order to show that it is an invariant, we need to show

{I ∧ z < 3n} c {I}

We apply the assignment rules (for each variable) followed by the sequencing rule
in order to obtain :

{27(x + (y + 2(z + 3) − 3) − (z + 3) − 1) = (z + 3)3 ∧ 3(y + 2(z + 3) − 3) =
(z + 3)2 ∧ (z + 3) ≤ 3n} c {I}

3

L3 ENS Paris-Saclay Programmation 1

Furthermore, since

z + 3 ≤ 3n =⇒ z ≤ 3(n+ 1) =⇒ z < 3n

we have our loop invariant. Then, using the while property, we have the inference

{I} while b do c {I ∧ ¬b}

Clearly x ∼ 0 ∧ y ∼ 0 ∧ z ∼ 0 ∧ n ≥ 0 =⇒ I and,

I ∧ z ≮ 3n =⇒ 27x = z3 ∧ 3y = z2 ∧ z ≤ 3n ∧ z ≮ 3n

=⇒ 27x = z3 ∧ 3y = z2 ∧ z = 3n

=⇒ 27x = (3n)3

=⇒ x = n3

Finally, by the consequence rule, we have {x ∼ 0∧y ∼ 0∧z ∼ 0∧n ≥ 0} w {x ∼ n3}.

Plus faible précondition libérale

On note wlpI (c, φ) , {ρ | JcKρ |=I φ}.

Exercise 3 : Weakest liberal precondition

1. Let I be an interpretation of logical variables. For all programs c without a while
loop and formulas ψ, construct a formula φc,ψ such that ρ |=I φc,ψ if and only if
ρ ∈ wlpI (c, ψ).

2. Let φ be a formula defining wlpI (while b do c, ψ). Give an equation |=I φ ⇐⇒ φ′

where φ′ is a formula involving φ.
3. Using infinite disjunction and conjunction, write two solutions to this equation.
4. Which one does φ correspond to ?

Solution:
(Sketch)

1. For all the commands c except while, we have the following

(a) wlp(skip, ψ) = ψ

(b) wlp(x := a, ψ) = ψ[a/x]

(c) wlp((c1; c2), ψ) = wlp(c1, wlp(c2, ψ))

(d) wlp(if b then c1 else c2, ψ) = (b =⇒ wlp(c1, ψ)) ∧ (¬b =⇒ wlp(c2, ψ)

2. (All subsections follow) The definition of wlpI (while b do c, ψ) is not straightfor-
ward. We encode the WLP for every iteration of the loop. For a loop that terminates
in i steps, we have the following definition

F0(ψ) = True

Fi+1(ψ) = (¬b =⇒ ψ) ∧ (b =⇒ wlpI (c, Fi(ψ)))

Using infinite conjuction, we obtain

wlpI (while b do c, ψ) =
∧
i

Fi(ψ)

4

