Exercise 1: Language discovery

For each of the following program or fragment of program, please indicate: (a) What the fragment does (b) Is it written using the imperative or functional paradigm (c) In which language the fragment is written.

1. PROGRAM HELLO
 WRITE(6,*), 'HELLO WORLD'
 STOP
 END

2. PROGRAM FACT
 J=1
 DO 1 I=1,10
 J=J*I
 1 CONTINUE
 WRITE(6,2) J
 2 FORMAT(I8)
 STOP
 END

3. IDENTIFICATION DIVISION.
 PROGRAM-ID. 'HELLO'.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-360.
 OBJECT-COMPUTER. IBM-360.
 SPECIAL-NAMES.
 CONSOLE IS CNSL.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 HELLO-CONST PIC X(12) VALUE 'HELLO,WORLD'.
 PROCEDURE DIVISION.
 000 DISPLAY.
 DISPLAY HELLO-CONST UPON CNSL.
 STOP RUN.

4. (defun fact (n)
 (do* ((i 1 (+ i 1)) (j 1 (* j i)))
 ((>= i n) j)))

5. □ ← */10

6. def factorial(n):
 result = 1

*Majority of the material has been gathered with help from the TAs of this course over the past few years.
for i in range(1, n+1):
 result *= i
return result

7. int fact (int n)
 {
 int i, j;
 j = 1;
 for (i=1; i<=n; i++)
 j *= i;
 return j;
 }

8. fact :: Int -> Int
 fact 1 = 1
 fact n = n * fact (n-1)

9. let rec fact n =
 if n==1
 then 1
 else n * fact (n-1);

10. fact(1, 1).
 fact(N, M) :- N > 1, fact (N-1, M1), M=M1*N.

11. counter=$1
 factorial=1
 while [$counter -gt 0]
 do
 factorial=$(($factorial * $counter))
 counter=$(($counter - 1))
 done
 echo $factorial

12. /factorial {
 dup 1 eq {}{
 dup 1 sub factorial mul
 } ifelse
 } def

13. function fac(n){
 return(n<2)?1:fac(n-1)*n;
 }

Exercise 2: Representation of numbers

1. How many values can a 1 bit integer take? What about 3 bits? What about n bits?
2. You’re building a fence 100 feet long, with posts every 10 feet. How many posts do you need?

Unsigned numbers

The sequence $\vec{a} \equiv a_{n-1} \cdots a_0$ of digits is interpreted as

$$[\vec{a}]_u \equiv \sum_{k=0}^{n-1} a_k 2^k$$
Two’s complement, AKA signed numbers

The sequence $\vec{a} \triangleq a_{n-1} \cdots a_0$ of digits is interpreted as

$$[\vec{a}]_{tc} \triangleq -a_{n-1}2^{n-1} + \sum_{k=0}^{n-2} a_k 2^k$$

3. What values can a natural number represented using n bits take? What about a signed number?

4. Compute the following additions on 4 bit unsigned numbers:
 (a) $0010 + 0110$
 (b) $0101 + 1010$
 (c) $1011 + 1101$
 (d) $1010 + 0110$

One’s complement

The sequence $\vec{a} \triangleq a_{n-1} \cdots a_0$ of digits is interpreted as

$$[\vec{a}]_{tc} \triangleq \begin{cases} \sum_{k=0}^{n-2} a_k 2^k & \text{if } a_{n-1} = 0 \\ \sum_{k=0}^{n-2} (a_k - 1) 2^k & \text{otherwise} \end{cases}$$

5. How does one write 1 using One’s complement? What about -1? How can you negate a number?

6. What is a huge drawback of this representation?

7. Using previous examples, build an algorithm to add two numbers in One’s complement. (Hint: the question is, how to handle the carry).

8. Why does your algorithm terminate?

9. What is printed by the Java program below?

```java
byte i = 101, j = 87, k = -101, l = -99;
byte m, n, o;
m = i+j; n = j+k; o = k+l;
System.out.println(m);
System.out.println(n);
System.out.println(o);
```

Exercise 3 : Representation of text

1. Decode the following ASCII string (written using hexadecimal codes)

```
64 6f 6e 27 74 20 70 61 6e 69 63
```

A few Unicode characters

<table>
<thead>
<tr>
<th>Code</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+000A</td>
<td>LINE FEED (LF)</td>
</tr>
<tr>
<td>U+0020</td>
<td>SPACE</td>
</tr>
<tr>
<td>U+0021</td>
<td>EXCLAMATION MARK</td>
</tr>
<tr>
<td>U+002C</td>
<td>COMMA</td>
</tr>
<tr>
<td>U+0030</td>
<td>DIGIT ZERO</td>
</tr>
<tr>
<td>U+0041</td>
<td>LATIN CAPITAL LETTER A</td>
</tr>
<tr>
<td>U+0061</td>
<td>LATIN SMALL LETTER A</td>
</tr>
</tbody>
</table>
2. What could be the shortcomings of UTF-32?

<table>
<thead>
<tr>
<th>UTF-8 encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>— U+0000 à U+007F : 0xxxxxxx</td>
</tr>
<tr>
<td>— U+0080 à U+07FF : 110xxxxx 10xxxxxx</td>
</tr>
<tr>
<td>— U+0800 à U+FFFF : 1110xxxx 10xxxxxx 10xxxxxx</td>
</tr>
<tr>
<td>— U-10000 à U-1FFFFF : 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx</td>
</tr>
</tbody>
</table>

3. Decode the following UTF-8 string

70 65 6E 20 70 69 6E 65 61 70 70 6C 65

4. Does UTF-8 have the same shortcomings as UTF-32? How and why?

5. When fetching the following webpage

my web browser displays:

Now remember that \((x_i)_{i \in I} \) converges to \(x\) if and only if every open subset \(U\) that contains \(x\) is such that \(x_i\) is eventually in \(U\). One obtains an equivalent definition by stating that every neighborhood \(A\) of \(x\) (i.e., in \(N\)) is such that \(x_i\) is eventually in \(A\). In other words, if and only if \(N\) is included in the convergence filter of the net.

However, the server projects.lsv.ens-cachan.fr sent to my browser the following (extract) of code:

Now remember that \(x_i\) \(i \in I, \sqsubseteq\) converges to \(x\) if and only if every open subset \(U\) that contains \(x\) is such that \(x_i\) is eventually in \(U\). One obtains an equivalent definition by stating that every neighborhood \(A\) of \(x\) (i.e., in \(N\)) is such that \(x_i\) is eventually in \(A\). In other words, if and only if \(Nx\) is included in the convergence filter of the net.

How does it compare to Unicode?

6. Going back to the first example of HTML, the file started with:

```html
<?
$EXTRA_HEAD="antispam.html";
$ARG_BODY="onload="onLoad()"";
SETLANG("fr")
STYLEDPINFO();
HEAD("Conférences de rentrée 2015");
ADDTITLE("Conférences de rentrée 2015");
MKPAGEDPINFO();
?>
```

This is not HTML. What language is used? What does it compute?