Tree Automata and their Applications

TD n°4: Extensions and PDL

2021-2022

From last TD: Alternating Word Automata

Definition 1 If \mathcal{X} is a set of propositional variables, let $\mathbb{B}(\mathcal{X})$ be the set of positive propositional formulae on \mathcal{X} , i.e., formulae generated by the grammar $\phi := \bot \mid \top \mid \phi \lor \phi \mid \phi \land \phi$.

Definition 2 A AWA (Alternating Word Automata) is a tuple $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ where Σ is a finite set (alphabet), Q is a finite set (of states), $Q_0 \subset Q$ (initial states), $Q_f \subseteq Q$ (final states) and δ is a function from $Q \times \Sigma$ to $\mathbb{B}(Q)$ (transition function). A run of $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ on a word w is a tree t labelled by Q such that:

- if $w = \varepsilon$, then $t = q_0$ with $q_0 \in Q_0$.
- if w = a.w', then $t = q_0(t_1, ..., t_n)$ $q_0 \in Q_0$ and such that for all i, t_i is a run of w' on $(Q, \Sigma, q_i, Q_f, \delta)$ and $\{q_1, ..., q_n\} \models \delta(q_0, a)$.

Definition 3 We say that a run is accepting if every leaf of the form q satisfies that $q \in Q_f$.

- 1. Show how to reduce the emptiness problem for an AWA on a one letter alphabet $\{a\}$ with formulas that are in positive disjunctive normal form to the emptiness problem of a tree automaton.
- 2. Show how to reduce the emptiness problem for a tree automaton to the emptiness problem of an AWA on a one letter alphabet $\{a\}$. Conclude on the complexity of the emptiness problem for an AWA on a one letter alphabet.

From last TD : Extensions

Definition 4 (extension encoding)

Let t be an unranked tree on Σ . Let $\mathcal{F}_{ext}^{\Sigma} = \{@(2)\} \cup \{a(0) \mid a \in \Sigma\}$. We define the ranked tree ext(t) by induction on the size of t by:

- for $a \in \Sigma$, ext(a) = a
- if $t = a(t_1, ..., t_n)$ with $n \ge 1$, $ext(t) = @(ext(a(t_1, ..., t_{n-1})), ext(t_n))$ that is $ext(a(t_1, ..., t_n))$ is equal to :

1. Give the extension encoding of:

2. Let L be a language of unranked trees. Prove that L is recognizable by a NFHA iff ext(L) is recognizable by a NFTA.

Exercise 3: Warm up PDL

Definition 5 (PDL)

The syntax is the following:

$$\phi ::= a \mid \top \mid \neg \phi \mid \phi \lor \phi \mid \langle \pi \rangle \phi \qquad (position formulae)$$

$$\pi ::= \downarrow \mid \rightarrow \mid \pi^{-1} \mid \pi; \pi \mid \pi + \pi \mid \pi^* \mid \phi? \qquad (path formulae)$$

The semantic is defined this way: let t be a tree, we define $[\![\phi]\!]_t$ (resp. $[\![\pi]\!]_t$) as a set of positions of t (resp. a relation on positions of t) by induction on the size of ϕ (resp. π):

Let t be a tree and $w, w' \in Pos(t)$. We note:

- $-t, w \models \phi \text{ if } w \in \llbracket \phi \rrbracket_t$
- $t \models \phi \text{ if } t, \epsilon \models \phi \text{ and we say that } t \text{ satisfies } \phi$
- $-t, w, w' \models \pi \text{ if } (w, w') \in \llbracket \pi \rrbracket_t$

Let t be the tree :

Which formulae are satisfied by t?

1.
$$\phi_1 = \neg a \lor \langle \downarrow \rangle \left(\neg \langle \leftarrow \rangle \top \land b \land \langle \rightarrow^* \rangle (c \land \neg \langle \rightarrow \rangle \top) \right)$$

2.
$$\phi_2 = \neg a \lor \langle \downarrow \rangle \left(\neg \langle \leftarrow \rangle \top \land b \land \langle (\rightarrow; c?)^* \rangle (\neg \langle \rightarrow \rangle \top) \right)$$

3.
$$\phi_3 = \langle (a?; \downarrow)^* \rangle (a \land \neg \langle \downarrow \rangle \top)$$

Exercise 4: The power of PDL?

Give a translation of PDL in MSO which preserves models. That is, given a position formula ϕ (resp. a path formula π), construct a MSO formula $\tilde{\phi}$ (resp. $\tilde{\pi}$) whose set of free variable is $\{X_a \mid a \in \mathcal{F}\} \cup \{x\}$ (resp. $\{X_a \mid a \in \mathcal{F}\} \cup \{x,y\}$) such that $t, w \models \phi$ iff $(P_a(t))_{a \in \mathcal{F}}, w \models \tilde{\phi}$ (resp. $t, w, w' \models \pi$ iff $(P_a(t))_{a \in \mathcal{F}}, w, w' \models \tilde{\pi}$) where $P_a(t) = \{w \in Pos(t) \mid t(w) = a\}$.

Homework for final week : From formulaes to automaton

Give tree automatons recognizing the languages on trees of maximum arity 2 defined by the formulae. (To remind you, $P_f(z)$ means "at position z there is an f") (you do not have to prove that your construction is correct, just the automata will suffice):

1.
$$(x \in S \land (x \downarrow_1 y \Rightarrow y \in S)) \land (z \in S \Rightarrow P_f(z))$$

2.
$$\exists S.(x \in S \land (x \downarrow_1 y \Rightarrow y \in S)) \land (z \in S \Rightarrow P_f(z))$$

Note: You can send the homework by mail to asuresh@lsv.fr by 13th January, 2022. You can send me pictures of your handwritten answers, if you are not comfortable with typing it up.