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Exercise : Alternating Word Automata

Definition 1 If X is a set of propositional variables, let B(X) be the set of positive propo-
sitional formulae on X, i.e., formulae generated by the grammar ¢ ::= L | T | oV & | ¢ A ¢.

Definition 2 A AWA (Alternating Word Automata) is a tuple A = (Q, 3, Qo, Qf,d) where

Y is a finite set (alphabet), Q is a finite set (of states), Qo C Q (initial states), Q5 C Q

(final states) and § is a function from Q x 3 to B(Q) (transition function). A run of A =

(@Q,%,Q0,Qf,6) on a word w is a tree t labelled by Q such that :

— ifw=¢, then t = qo with qo € Q.

— ifw=aw, thent = qo(t1,...,tn) o € Qo and such that for all i, t; is a run of w' on
(Q7 X, ¢, va 5) and {qla s aQn} >: 5(q07 a’)'

Definition 3 We say that a run is accepting if every leaf of the form q satisfies that ¢ € Q.

1. Show how to reduce the emptiness problem for an AWA on a one letter alphabet {a}
with formulas that are in positive disjunctive normal form to the emptiness problem of
a tree automaton.

2. Show how to reduce the emptiness problem for a tree automaton to the emptiness problem
of an AWA on a one letter alphabet {a}. Conclude on the complexity of the emptiness
problem for an AWA on a one letter alphabet.

Solution:

1. Let A = (Q,{a},q0,Q¢,9) an AWA. Notice that 0 only contains one rule. The
accepted trees then have a very particular form, which we can recognize using an
NFTA. We construct an NFTA of the form
Q. {fr(k) |0 <k <n},F,A") with F = Q) :

n k;

5((]7 CL) = \/ /\((Zm’@) = Vi7fi(Qi,17 7q7,,kl) — q € 5/
i=1j=1

2. Let A=(Q,F,0,Q¢) be an NFTA.

We build an instance (A’,al®l) of the membership problem in AWA, where A’ :=
(Q',0,0,q0), where Q' := Q x FW{qo}. For a pair (q, f) in @ X F,, with n > 0, we
define the formula

(g )=\ A V@9

(Q7f7Q17~~~7Q”n)€6 ie{l,...,n} geF

Regarding the initial state go, we make a disjunction over all possible pairs in Q5 x F.

&' (q0,a) =\ \/ §((a, f),a)

q€Qy fEF



Now, we prove that our construction is correct.

If L(A) # 0, then there exists a tree of height at most |@Q| in L(.A) (by the pigeonhole
principle).

Let us assume that L(A) is not empty. Then there exists a tree t € L(A) with
height at most |Q], i.e. |[p| < |Q| for all p € dom ¢. Thus there exists an accepting
run p € T(Q) with dom p = dom ¢, p(¢) € Qy, and every elementary tree in p is
consistent with 6. We can map the pair ¢, p to a tree ¢ in T(Q x {0, ..., |Q|?1}) with
domain dom t' := dom t.

It remains to show that ¢ is an accepting run of A’ on al9l. Let p be a position
in dom ¢’ other than the root. Then t(p) = f and p(p) = ¢ for some f € F, for
some n and ¢ € Q. Since p is a run of A, p has n children pl,...,pn and there
exists a transition (q, f,q1,...,q,) € 0 with p(pi) = ¢; for all 1 < i < n; let also
t(pi) = g; € F for all 1 <4 < n. Finally, for the root, there exists p(¢) € Q¢ and
t(g)?F, for some n such that, in a similar way, the children satisfy the requirement.
Conversely, assume there is an accepting run ¢ € T(Q) of A'.

First, we show that every non-root position p of ¢’ such that ¢'(p) = ¢ has exactly n
children for some (q, f,q1,--.,qn) € 0. Indeed, the list of children must satisfy ¢; A
-+ - Agp for some (q, f,q1,...,qn). Hence, this list must contain at least one occurence
of each state ¢;. If there exists a child position pi such that ¢(pi) ¢ {q1,...,qn}, then
the entire subtree can be removed, and we still have an accepting tree. Conversely,
if p is smaller, there is a child position pi with ¢'(pi) = ¢, and that can be duplicated
as many times as needed. Finally, the children can be reordered such that ¢'(pi) = ¢;
since the ordering does not matter for acceptance. We can extend this assumption
for the root.

We find a tree ¢t € T(F) and an accepting run p € T(Q), thereby showing that
L(A) is not empty. We define for this, for all p # ¢, t(p) := f € F, for some n and
?(p) := q if ¥'(p) = (q, f). By definition of §, for any such position p, there exists a
transition (q, f,q1,...,qn) € 0 such that p(pi) = ¢; for all 1 < i < n. Regarding the
root, we also know that there exists ¢ € Q¢ and f € F, for some n such that there
is a transition (q, f,q1,...,qn) € 6 with p(i) = ¢; for all 4, thus definining ¢(¢) := f
and p(e) := ¢. Hence, there is a tree in L(A) with an accepting run.

We deduce that emptiness for AWA on singleton alphabet is P-hard.

Exercise : Extensions

Definition 4 (extension encoding)
Let t be an unranked tree on X. Let F, = {@Q(2)} U{a(0) | a € B}. We define the ranked
tree ext(t) by induction on the size of t by :

o forae X, ext(a) =a

o ift =a(ty,....tn) withn > 1, ext(t) = Qext(a(ty,....,tn—1)), ext(t,))

that is ext(a(ty, ..., tn)) is equal to :

@
v
ext(ty,)
a
VR
@ ext(ts)
/ N
a ext(ty)

1. Give the extension encoding of :
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Solution:
@
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a @] d b
/\
c d

2. Let L be a language of unranked trees. Prove that L is recognizable by a NFHA iff ext(L)
is recognizable by a NFTA.

Solution:
=) Let A =(Q,%,A, F) be a NFHA recognizing L such that there is exactly one
rule of the form a(Lq,q) — ¢ for all (a,q) and let Ba g = (Pag, Q00 4 6ag> Faq)
a deterministic automaton recognizing L, ,. We construct the expected NFTA

this way :
A/ _ <Ql’]:62att’ /,F,>
where :
e Q= U Paoq
(a,q)
e "= Fagq
(a,q)|lg€F
o N =

* a— pgﬂ for all (a, q)
* Q(p,p') — p" if p,p" € Py, 1 € Fog with 0 4(p,q¢') = p” for some
b,q,a,q
<) Let A = (Q, F2,, F,A) be a NFTA recognizing ext(L). We construct the ex-

pected NFHA this way :
A =(Q,%,F, A

where for all (a,q), a(Rqq4) — q € A" where R, 4 is the language recognized by
the automaton :

Ba,q = <Q7 Q7 Ia,q7 Fa,q7 Aa,q>

with :
e L,g={peQ|a—peA}
° Fa’q =
* {q} if ¢ € F or if there exists ¢/, ¢ such that Q(¢’,q) — ¢’ € A
* & else

o Aug=1{(q1,92,83) | Qq1,q2) — q3 € A}
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