Tree Automata and their Applications

TD n°3: Logic and Hedges

2021-2022

Exercise 1: MSO on finite trees

We consider trees with maximum arity 2. Give MSO formulae which express the following:

- 1. X is closed under predecessors
- 2. $x \subseteq y$ (with \subseteq the prefix relation on positions)
- 3. 'a' occurs twice on the same path
- 4. 'a' occurs twice not on the same path
- 5. There exists a sub tree with only a's
- 6. The frontier word contains the chain 'ab'

Solution:

- 1. $closed(X) := \forall y \forall z (y \in X \land (z \downarrow_1 y) \lor z \downarrow_2 y)) \Rightarrow z \in X)$
- 2. $x \subseteq y := \forall X (y \in X \land closed(X) \Rightarrow X(x))$
- 3. $\exists x \exists y (\neg(x=y) \land x \subseteq y \land P_a(x) \land P_a(y))$
- 4. $\exists x \exists y (\neg (y \subseteq x) \land \neg (x \subseteq y) \land Pa(x) \land P_a(y))$
- 5. $\exists x \forall y (x \subseteq y \Rightarrow P_a(y))$
- 6. We first implement a way to say that a leaf is next to another one:

$$x \prec y := \exists x_0 \exists y_0 \exists z(z \downarrow_1 x_0) \land (z \downarrow_2 y_0) \land x_0 \subseteq x \land y_0 \subseteq y)$$

And with this:

$$\exists x \exists y (Fr(x) \land Fr(y) \land P_a(x) \land P_b(y) \land x \prec y \land \neg \exists z (Fr(z) \land x \prec z \land z \prec y))$$

Exercise 2: The power of Wsks

Produce formulae of WSkS for the following predicates:

- \bullet the set X has exactly two elements.
- the set X contains at least one string beginning with a 1.
- $x \leq_{lex} y$ where \leq_{lex} is the lexicographic order on $\{1, ... k\}^*$.
- given a formula of WSkS ϕ with one free first-order variable, produce a formula of WSkS expressing that there is an infinity of words on $\{1, ..., k\}^*$ satisfying ϕ .

Solution:

•

$$|X| \le 2 \doteq \forall Y. Y \subseteq X \Rightarrow (Y = \varnothing \lor Sing(Y) \lor Y = X)$$
$$|X| \ge 2 \doteq \exists x, y. x \neq y \land x \in X \land y \in X$$
$$|X| = 2 \doteq |X| \le 2 \land |X| \ge 2$$

$$X \cap 1.\Sigma^* \neq \varnothing \doteq \exists x. x \in X \land 1 < x$$

•

$$x \leq_{lex} y \doteq x \leq y \lor (\exists z. \bigvee_{i < j \leq k} (z.i \leq x \land z.j \leq y))$$

•

$$X \models \phi \doteq \forall x, x \in X \Rightarrow \phi(x)$$

 ϕ satisfied by an infinity of words $\doteq \forall X, X \models \phi \Rightarrow \exists Y, X \subsetneq Y \land Y \models \phi$

Exercise 3: The limit of Wsks

Prove that the predicate x = 1y is not definable in WSkS.

Solution:

We use the equivalence with recognizable tree languages. So we have to prove that $L = \{tra(x,y) \mid x = 1.y\}$ is not recognizable. Using the translation, we see that

$$L \cap \{t_i \sigma \mid t_i = 00(i \perp (x_1, ..., x_k), y_2, ..., y_k), i \in \{0, 1\}, \sigma \ closed \ substitution\}$$

$$= \{tra(x,y) \mid x = 1.y \land y \in \{2,...,k\}.\{1,...,k\}^*\} = L'$$

So it is enough to prove that L' is not recognizable. Now elements of L' are of the form :

with $p \in \{2, ..., k\}.\{1, ..., k\}^*$, t and s injective and the height of t and s strictly increasing with p. You can reason by contradiction using the pumping lemma : for p large enough, using the pumping lemma, you can iterate a piece of t(p) without touching s(p) (or vice versa) while staying in L' which is absurd by injectivity.

Exercise 4: Alternating Word Automata

Definition 1 If \mathcal{X} is a set of propositional variables, let $\mathbb{B}(\mathcal{X})$ be the set of positive propositional formulae on \mathcal{X} , i.e., formulae generated by the grammar $\phi ::= \bot \mid \top \mid \phi \lor \phi \mid \phi \land \phi$.

Definition 2 A AWA (Alternating Word Automata) is a tuple $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ where Σ is a finite set (alphabet), Q is a finite set (of states), $Q_0 \subset Q$ (initial states), $Q_f \subseteq Q$ (final states) and δ is a function from $Q \times \Sigma$ to $\mathbb{B}(Q)$ (transition function). A run of $\mathcal{A} = (Q, \Sigma, Q_0, Q_f, \delta)$ on a word w is a tree t labelled by Q such that:

- if $w = \varepsilon$, then $t = q_0$ with $q_0 \in Q_0$.
- if w = a.w', then $t = q_0(t_1, ..., t_n)$ $q_0 \in Q_0$ and such that for all i, t_i is a run of w' on $(Q, \Sigma, q_i, Q_f, \delta)$ and $\{q_1, ..., q_n\} \models \delta(q_0, a)$.

Definition 3 We say that a run is accepting if every leaf of the form q satisfies that $q \in Q_f$.

1. Let $\Sigma = \{0, 1\}$ and $\mathcal{A} = (Q, \Sigma, q_0, Q_f, \delta)$ the AWA such that $Q = \{q_0, q_1, q_2, q_3, q_4, q'_1, q'_2\},$ $Q_f = \{q_0, q_1, q_2, q_3, q_4\}$ and :

$$\delta = \{ q_0 0 \longrightarrow (q_0 \land q_1) \lor q'_1 \quad q_0 1 \longrightarrow q_0 \\ q_1 0 \longrightarrow q_2 \quad q_1 1 \longrightarrow \top \\ q_2 0 \longrightarrow q_3 \quad q_2 1 \longrightarrow q_3 \\ q_3 0 \longrightarrow q_4 \quad q_3 1 \longrightarrow q_4 \\ q_4 0 \longrightarrow \top \quad q_4 1 \longrightarrow \top \\ q'_1 0 \longrightarrow q'_1 \quad q'_1 1 \longrightarrow q'_2 \\ q'_2 0 \longrightarrow q'_2 \quad q'_2 1 \longrightarrow q'_1 \}$$

Give an example of an accepting computation of \mathcal{A} on w = 00101 and an example of a non accepting computation of \mathcal{A} on w.

2. Prove that for all AWA, we can compute in exponential time a non-deterministic automaton which accepts the same language.

Solution:

1.

The left is non accepting but the right is.

2. Given $\mathcal{A}=(Q,\Sigma,Q_0,Q_f,\delta)$ an AWA, we produce $\mathcal{A}'=(2^Q,\Sigma,2^{Q_0},2^{Q_f},\delta')$ with :

$$\delta'(S,a) = \{S'|S' \models \bigwedge_{s \in S} \delta(s,a)\}$$