Tree Automata and their Applications

TD n°3: Logic and Hedges

2021-2022

Exercise 1: To the infinity...

Let $\Sigma = \{a, b\}$. Define a DFHA \mathcal{A} such that $L(\mathcal{A})$ is the set of all trees such that "for every leaf labeled with a, there is an ancestor from which there is a path whose nodes are labeled with b". Here "ancestor" means strict ancestor and "from which there is a path" means that there is a path from a son of this ancestor to a leaf.

Solution:

Note: Many of you made the mistake of not considering trees of the following kind:

Any left of the tree that is labelled with a should have an ancestor (which can be labelled a or b) such that it has a branch that is completely labelled by bs. Hence, this is the following hedge automata. (Also, remember to have transitions from the leaves as well, a lot of you forgot that.)

$$Q = \{q_a, q_b, q_\top\}, F = \{q_b, q_\top\} \text{ and } \Delta = \\ \star a(\epsilon) \longrightarrow q_a \\ \star a(q_\top^+) \longrightarrow q_\top \\ \star a((q_\top + q_a)^* q_a (q_\top + q_a)^*) \longrightarrow q_a \\ \star b(q_\top^+) \longrightarrow q_\top \\ \star b(\epsilon) \longrightarrow q_b \\ \star a(Q^* q_b Q^*) \longrightarrow q_\top \\ \star b(Q^* q_b Q^*) \longrightarrow q_b \\ \star b((q_\top + q_a)^* q_a (q_\top + q_a)^*) \longrightarrow q_a$$

Exercise 2: Membership

- 1. Recall the complexity of the uniform membership problem for DFTAs, NFTAs and NF-HAs.
- 2. Prove that (Alternating UMembership):

Instance: an AWA \mathcal{A} and a word w

Question : $w \in L(A)$?

is in PTIME.

3. Prove that (HarderUMembership):

Instance: an NFHA \mathcal{A} where the horizontal languages are given by AWA (and not finite

automata) and a word wQuestion : $w \in L(A)$?

is in NP.

- 4. Let Φ be a propositional formula in CNF with n variables $x_1, ..., x_n$. Construct, in polynomial time, an AWA \mathcal{A}_{Φ} whose language is $\{w \in \{0,1\}^n \mid w \models \Phi \text{ i.e. } \Phi_{[x_i \leftarrow w_i]} = \top\}.$
- 5. Deduce that membership for NFHA where horizontal languages are given by AWA is NP-complete.

Solution:

1. In the case of DFTA, from a term t and the automaton A, we can compute a run in O(|t|+|A|). In the nondeterministic case, the idea is similar to the word case: the algorithm determinizes along the computation, i.e. for each node of the term, we compute the set of reached states. The complexity of this algorithm will be in $O(|t| \times |A|)$.

For NFHAs, the idea is similar to the NFTA, and we obtain a PTIME algorithm.

- 2. Let n be the size of w. Define S_i with $0 \le i \le n$ by decreasing induction:
 - $--S_n = Q_f$
 - $-S_i = \{ q \in Q \mid \exists q, w_i \to \phi \in \mathcal{A}, S_{i+1} \models \phi \}$

Then $w \in L(A)$ iff $I \cap S_0 \neq \emptyset$. All this can be done in PTIME.

- 3. in NP: first, guess a run i.e. a coloring ρ by states of your tree. Second, check this is an accepting run i.e. for all position p of t, check that there exists a transition of the form $t(p)(L) \longrightarrow \rho(p)$, that $\rho(p,1)...\rho(p,k) \in L$ (which can be done in P by exercise 1) and $\rho(\epsilon)$ is a final state.
 - NP-hard : we reduce SAT. Let Φ in CNF. We construct \mathcal{A}_{Φ} this way : Q = $\{0,1,q_f\}, F = \{q_f\}, \Sigma = \{@,\#\} \text{ and } \Delta = \{\#(\epsilon) \longrightarrow 1, \#(\epsilon) \longrightarrow 0, a(\mathcal{A}_{\Phi}) \longrightarrow 0, a(\mathcal{A}$ q_f } where \mathcal{A}_{Φ} is from exercise 2. Then Φ is satisfiable iff $a(\#,...,\#) \in L(\tilde{\mathcal{A}}_{\Phi})$.
- 4. Let $\Phi = \bigwedge_{j=1}^{m} C_j$ with C_j clauses. The expected AWA is the following:
 - $Q = \{q_0\} \cup \{q_j^{\alpha,k} \mid 1 \le j \le m, 1 \le k \le n, \alpha \in \{0,1\}\}$

 - $I = \{q_0\}$ $F = \{q_j^{1,n} \mid 1 \le j \le m\}$
 - - $\begin{array}{l} \star \ q_1^{j,\, }, \ \ \, \stackrel{}{\longrightarrow} \ q_1^{1,k+1} \ \, \text{for all } j \ \, \text{and all } k < n \ \, \text{such that } x_k \in C_j \\ \star \ q_1^{0,k}, 1 \longrightarrow q_j^{0,k+1} \ \, \text{for all } j \ \, \text{and all } k < n \ \, \text{such that } x_k \notin C_j \\ \star \ q_1^{0,k}, 0 \longrightarrow q_j^{1,k+1} \ \, \text{for all } j \ \, \text{and all } k < n \ \, \text{such that } \neg x_k \in C_j \\ \star \ q_1^{0,k}, 0 \longrightarrow q_j^{0,k+1} \ \, \text{for all } j \ \, \text{and all } k < n \ \, \text{such that } \neg x_k \notin C_j \\ \end{array}$
- 5. NP-hard: we reduce SAT. Let Φ in CNF. We construct $\tilde{\mathcal{A}}_{\Phi}$ this way: $Q = \{0, 1, q_f\}$, $F = \{q_f\}, \ \Sigma = \{a, \#\} \text{ and } \Delta = \{\#(\epsilon) \longrightarrow 1, \#(\epsilon) \longrightarrow 0, a(\mathcal{A}_{\Phi}) \longrightarrow q_f\} \text{ where } \mathcal{A}_{\Phi}$ is from the previous question. Then Φ is satisfiable iff $a(\#,...,\#) \in L(\mathcal{A}_{\Phi})$.