Tree Automata and their Applications

TD n°2: Decision problems & tree homomorphisms

2021-2022

Exercise 1: About Nutts

A bottom-up tree transducer (NUTT) is a tuple $U = (Q, \mathcal{F}, \mathcal{F}', Q_f, \Delta)$ where Q is a finite set (of states), \mathcal{F} and \mathcal{F}' are finite ranked sets (of input and output), $Q_f \subseteq Q$ (final states) and Δ is a finite set of rules of the form:

- $f(q_1(x_1),...,q_n(x_n)) \to q(u)$ where $f \in \mathcal{F}$ and $u \in T(\mathcal{F}',\{x_1,...,x_n\})$
- $q(x_1) \to q'(u)$ where $u \in T(\mathcal{F}', \{x_1\})$.

We say that U is linear when the right side of the rules of Δ are. This defines a rewrite system \to_U on $T(\mathcal{F} \cup \mathcal{F}' \cup Q)$. The relation induced by U is then $\mathcal{R}(U) = \{(t,t') \mid t \in T(\mathcal{F}), t' \in T(\mathcal{F}'), t \to_U^* q(t'), q \in Q_f\}$.

- 1) Prove that tree morphisms are a special case of NUTT that is if $\mu: T(\mathcal{F}) \longrightarrow T(\mathcal{F}')$ is a morphism, then there exists a NUTT U_{μ} such that $\mathcal{R}(U_{\mu}) = \{(t, \mu(t)) \mid t \in T(\mathcal{F})\}$. Be sure that if μ is linear then U_{μ} is too.
- 2) Prove that the domain of a NUTT U, that is $\{t \in T(\mathcal{F}) \mid \exists t' \in T(\mathcal{F}'), (t, t') \in U\}$, is recognizable.
- 3) Prove that the image of a recognizable tree language L by a linear NUTT U, that is $\{t' \in T(\mathcal{F}') \mid \exists t \in L, (t,t') \in U\}$, is recognizable.

Solution:

- 1) $Q = \{q\}, Q_f = \{Q\} \text{ and } \Delta =$
 - $\star f(q(x_1),...,q(x_n)) \longrightarrow q(\mu(f)(x_1,...,x_n))$ linear when μ is
- 2) $Q = Q_U$, $F = F_U$ and $\Delta =$
 - $\star f(q_1,...,q_n) \longrightarrow q$ if there exists u such that $f(q_1(x_1),...,q_n(x_n)) \longrightarrow q(u) \in \Delta_U$
 - $\star q \longrightarrow q'$ if there exists u such that $q(x_1) \longrightarrow q'(u) \in \Delta_U$
- 3) Let U a NUTT and A a NFTA on F. For every pair of rules $r = f(q_1(x_1), ..., q_n(x_n)) \longrightarrow q(u) \in \Delta_U$ and $r' = f(q'_1, ..., q'_n) \longrightarrow q' \in \Delta_A$, we define:
 - $-Q^{r,r'} = \{q_p^{r,r'} \mid p \in Pos(u)\}\$
 - $-\Delta^{r,r'}=$
 - $\Delta^{r,r} = \\ \star g(q_{p,1}^{r,r'}, ..., q_{p,k}^{r,r'}) \longrightarrow q_p^{r,r'} \text{ for } p \in Pos(u) \text{ such that } u(p) = g \in \mathcal{F}'$
 - \star $(q_i, q_i') \longrightarrow q_p^{r,r'}$ if $u(p) = x_i$ (linearity assure that we only have one of this kind for every i)
 - $\star \ q_{\epsilon}^{r,r'} \longrightarrow (q,q')$

For every rule $r = q(x) \longrightarrow q'(u) \in \Delta_U$, we define :

- $--Q^r = \{q_p^r \mid p \in Pos(u)\} \times Q_{\mathcal{A}}$
- $-\Delta^r =$
 - * $g((q_{p,1}^r, q''), ..., (q_{p,k}^r, q'')) \longrightarrow (q_p^r, q'')$ for $p \in Pos(u)$ such that $u(p) = g \in \mathcal{F}'$ and $q'' \in Q_A$
 - \star $(q, q'') \longrightarrow (q_p^r, q'')$ if u(p) = x and $q'' \in Q_A$ (linearity assure that we only have one of this kind)
 - $\star (q_{\epsilon}^r, q'') \longrightarrow (q, q'')$

Then this NFTA works:

$$\tilde{Q} = Q_U \times Q_A \cup \bigcup_{(r,r')} Q^{r,r'} \cup \bigcup_r Q^r$$

$$\tilde{A} = F_U \times F_A$$

$$\tilde{\Delta} = \bigcup_{(r,r')} \Delta^{r,r'} \cup \bigcup_r \Delta^r$$

Exercise 2: Decision problems

We consider the (GII) problem (ground instance intersection):

Instance: t a term in $T(\mathcal{F}, \mathcal{X})$ and \mathcal{A} a NFTA

Question: Is there at least one ground instance of t accepted by A?

- 1) Suppose that t is linear. Prove that (GII) is P-complete.
- 2) Suppose that \mathcal{A} is deterministic. Prove that (GII) is NP-complete.
- 3) Prove that **(GII)** is EXPTIME-complete.

hint: for the hardness, reduce the intersection non-emptiness problem (admitted to be EXPTIME-complete).

4) Deduce that the complement problem:

Instance: t a term in $T(\mathcal{F}, \mathcal{X})$ and linear terms $t_1, ..., t_n$

Question: Is there a ground instance of t which is not an instance of any t_i ? is decidable.

Solution:

1) in P: use a construction similar to exercise 1, intersect with \mathcal{A} and test the non-

P-hard: testing the emptiness of \mathcal{A} is equivalent to testing (GII) on \mathcal{A} and a variable.

2) in NP: guess for each variable an accessible state of A and verify that you can complete this to an accepting run by running the automata.

NP-hard: We reduce (SAT): let $\mathcal{F} = \{\neg(1), \lor(2), \land(2), \bot(0), \top(0)\}$ and \mathcal{A}_{SAT} the DFTA with $Q = \{q_{\top}, q_{\perp}\}, F = \{q_{\top}\}$ and $\Delta =$

- $\begin{array}{ccc} \star & \bot \longrightarrow q_\bot \\ \star & \top \longrightarrow q_\top \end{array}$
- $\star \neg (q_{\alpha}) \longrightarrow q_{\neg \alpha}$
- $\star \lor (q_{\alpha}, q_{\beta}) \longrightarrow q_{\alpha \lor \beta}$
- $\star \land (q_{\alpha}, q_{\beta}) \longrightarrow q_{\alpha \land \beta}$

The language of \mathcal{A}_{SAT} is the set of closed valid formulae.

Let ϕ a CNF formula, $\phi = \bigwedge_{i=1}^{n} c_i$ where c_i are clauses. Define t_{c_i} by induction on the

size of c_i :

- if $c_i = x_j$, $t_{c_i} = x_j$
- if $c_i = \neg x_j$, $t_{c_i} = \neg (x_j)$

Then $t_{\phi} = \wedge (t_{c_1}, \wedge (t_{c_2}, ..., \wedge (t_{c_{n-1}}, t_{c_n}^i)...))$. ϕ is satisfiable iff a closed instance of t_{ϕ} is recognized by \mathcal{A}_{SAT} .

- 3) in EXP: for each coloring of t by states (exponentially many):
 - check that the coloring of every occurrence of a variable is an accessible state (in P)
 - check that the coloring corresponds to an accepting run (in P)
 - for every variable, let $\{q_1,...,q_n\}$ be the set of the colorings of all occurrence of x. Check that $L(\mathcal{A}_{q_1}) \cap ... \cap L(\mathcal{A}_{q_n})$ is non empty where A_q is the NFTA obtained from \mathcal{A} by changing the set of final states to $\{q\}$ (in P)

EXP-hard: We reduce intersection non-emptiness: let $(A_k = (Q_k, \mathcal{F}, I_k, \Delta_k))_{k \in \{1, \dots, n\}}$ a finite sequence of top-down NFTA (we can transform a bottom-up NFTA to a topdown one in polynomial time). We suppose that all the Q_k are disjoint. Define:

```
-\mathcal{F}' = \mathcal{F} \cup \{h(n)\}\
- t = h(x, ..., x)
-- \tilde{\mathcal{A}} = (| |Q_k \sqcup \{q_0\}, \mathcal{F}', \{q_0\}, \Delta' \sqcup | |\Delta_k) \text{ where}
                      \Delta' = \{q_0(h(x_1, ..., x_n)) \longrightarrow h(q_1(x_1), ..., q_n(x_n)) \mid for \ q_k \in I_k\}
```

Then $L(A_1) \cap ... \cap L(A_n) \neq \emptyset$ iff t has a closed instance in L(A).

4) Use question 3 and exercise 4 of TD1.

Exercise 3: Path closures

Let us revisit the example from last week: $\mathcal{F} = \{f(2), g(1), a(0)\}$. Consider the set M(t)of terms which have a ground instance of the term t = f(a, g(x)) as a subterm, i.e. M(t) = $\left\{ C\left[f\left(a,g(u)\right)\right] \mid C \in \mathcal{C}(\mathcal{F}), u \in T(\mathcal{F}) \right\}.$

Prove that M(t) is not recognizable by a finite union of languages recognizable by a top-down DFTA.

Hint: You can use without proof the following fact (prove it if you have time): let t be a tree. The path language $\pi(t)$ is defined by:

- if t is a constant, $\pi(t) = \{t\}$
- if $t = f(t_1, ..., t_n), \ \pi(t) = \bigcup_{i=1}^n \{fiw \mid w \in \pi(t_i)\}$

Let L be a tree language. The path language of L is $\pi(L) = \bigcup_{t \in L} \pi(t)$. The path closure of L is defined by

$$pathclosure(L) = \{t \mid \pi(t) \subseteq \pi(L)\}$$

L is recognizable by a top-down DFTA iff L is recognizable and path closed, i.e. L = pathclosure(L).

Solution:

- non-recognizable by a top-down DFTA: it is not path-closed because if it were the case, as f(f(a,g(a)),a) and f(a,f(a,g(a))) are in M(t), then f(a,a) would be in M(t) too which is absurd.
- not a finite union of languages recognizable by a top-down DFTA : assume that M(t) is a finite union $\bigcup_{k=0}^{n} L_k$ where L_k is recognizable by a top-down DFTA and in particular path-closed. Let t^p be defined by induction:
 - $t^0 = f(a,t)$ $t^{p+1} = f(t^p, a)$

They all belong to M(t) then at least one of the L_k contains two different t^p and t^q with, say, p < q. As L_k is path-closed, it must also contains s^p , where s^r is defined by:

- $s^0 = f(a, a)$
- $s^{r+1} = f(s^r, a)$

which does not belong to M(t) (because, for example, it contains only fs and as). Contradiction.